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LIBS for fusion — state of art

» Succesful prototype of a remote system on FTU (Frascati Tokamak Upgrade)

» Succefull operation with berillium 0
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There are still problems and unknowns:
with focusing optics * Operation under atmospheric
pressure

* Unknown desposits morphology
» Susceptibility for the Te uncertainty
* Massive amount of data.

H.J. van der Meiden et al 2021 Nucl. Fusion 61 125001
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General idea and tools for ML for LIBS for fusion
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- / In principle it is OK, however, still need
1 " to validate on eperimental spectra.
= ~ . There is a need to model spectra which resemble
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Objectives

* Developement of DNN and CNN models trained on synthetic LIBS spectra and
validated on converted experimental data.

* Enhanced simulated LIBS spectra incorporating spectral features from
experimental data.

* Developed resolution enhancement and line separation models for precise
spectral analysis.

* Models with Averaged/bootstrapped synthetic spectra for analyzing non-
equilibrium LIBS spectra.

* Determination of the minimum SNR required for accurate predictions.
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Pipelines
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Power of neural networks (1)
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Power of neural networks (1)
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