

Shine-through of high energy NBI in ITER

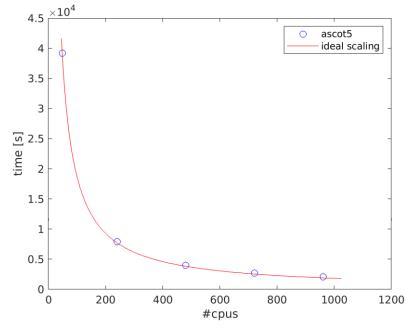
- ITER R&D category B issue
- ITPA-EP 17: "Validation of shine-through loads with high energy NBI"
- Can only be explored experimentally in JT-60SA, and numerically -> strong link to JT-60SA
- Re-baselining: emphasis from H to D
- In addition: use AI/ML to obtain NBI slowing-down characteristics
 - Power depositions (ions/electrons), losses, current-drive, torque etc...

B.11.2	Validation of shine- through loads with high energy NBI	Perform experiments with high energy NBI (E _{NBI} ~500 keV) to validate models for evaluation of shine- through loads in ITER	2	Tokamaks with high energy NBI and good diagnostics of shine- through power fluxes on PFCs	Required to accurately determine the Hydrogen H-mode operational space which is limited (in the low density side) by shine- through loads	PFPO-2 (FPO is also affected but because shine-through loads of D beams on D or DT plasmas are much lower and thus the consequences of revised shine-through loads are expected to be minor)

Project team

- Combination of the physics and AI/ML experts
- VTT:
 - ASCOT core developers/experts
 - AI/ML experts + support of the virtual fusion AI lab/FCAI community
- Consorzio-RFX
 - (BB)NBI expert
 - AI/ML fusion expert

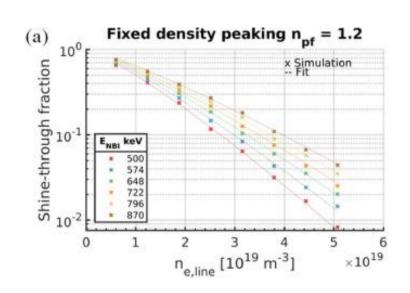
Person	Association	Expertise/role	PMs 2024	PMs 2025
Antti Snicker	VTT	Physics	2	3
Konsta Särkimäki	VTT	Physics	3	3
Daniel Jordan	VTT	AI/ML	3	3
Pietro Vincenzi	Consorzio-RFX	Physics	2	2
Rita S. Delogu	Consorzio-RFX	AI/ML	2	2

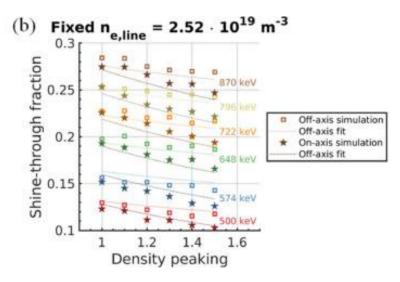


Project tools

- ASCOT code
 - Open-source software, integrated in IMAS, used widely
- Computation time reservations

• JFRS-1: "Following the evaluation process as described in the Call for projects, [389,886] node-hours will be allocated to your project,


(ASCOT_AI) (Principal Investigator: Antti Snicker)."



Where are we at?

- BBNBI simulations for H and He using IMAS done
 - Heuristic model fitted to dataset (N=288)
 - Need to repeat with D, using modern AI/ML techniques
- ASCOT code development
 - Latest version (ASCOT5) being IMASified
 - Python interface to facilitate AI workflows
- Project kick-off meeting

Where are we at?

- BBNBI simulations for H and He using IMAS done
 - Heuristic model fitted to dataset (N=288)
 - Need to repeat with D, using modern AI/ML techniques
- ASCOT code development
 - Latest version (ASCOT5) being IMASified
 - Python interface to facilitate AI workflows
- Project kick-off meeting

Year	Description	
2024.D1	Generation of input datasets for ASCOT/BBNBI simulations	
2024.D2	A training database for JT-60SA and ITER neutral beam shine-through as a function of the operational phase-space	
2024.D3	Database generation for JT-60SA and ITER neutral beam slowing-down characteristics using active learning methods	
2024.D4	A scientific publication describing the progress of the work	
2024.D5	AI/ML model for shine-through in JT-60SA and ITER	
2025.D1	AI/ML model for NBI slowing-down characteristics in JT-60SA and ITER	
2025.D2	Two scientific publications and two conference presentations to publish the work	

bey Ond the obvious

A. Snicker antti.snicker@vtt.fi