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Iterative Bayesian Inference

Repeated Evaluation during Bayesian

Inference
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* Complexrelation between
spectralintensity of the ECE radiation
and, e.g., the desired parameters, the magnetic fields, the mixing of
radiation polarisations upon reflections off the vacuumvessel walls

* TRAcing VISualized (TRAVIS) code: radiation transport code solving
accounting for wave absorption and emission

* Applied Bayesian inference is computationally expensive

 Example: inferring the T, profile for a single steady state discharge
of 10 seconds durationwith 1 kHz sampling can take days
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Iterative Bayesian Inference

Repeated Evaluation during Bayesian Inference
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Iterative Bayesian Inference

Repeated Evaluation during Bayesian Inference
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inference with surrogate Al . Non-lterative, Direct Inverse Mapping with ML Surrogate Models
models to provide fastinverse mappings

* Applicationto plasma parameterinference from diagnostics

* Target real-time application in the control room (min or even ms scale)
* Expect general applicability of resulting models & knowledge
Partners

* MPIfor Plasma Physics in Greifswald (IPP)

* University of Southern Denmark (SDU)
as associated 3 party via the Technical University of Denmark (DTU)



Project

Methods
* ANNSs as generic function approximators

Directinverse mapping has huge potential
Complexity analysis:

* Trade off speed vs accuracy

* Requirements per application
Focus on estimation of error and uncertainty
due to requirements for plasma operation
Investigate Physics Informed Neural Networks
(PINNs), Kolmogorov-Arnold Networks, and
especially for stages 2 & 3 Bayesian Networks
(also as PiNN variants) and ANNs/PiNNs with
Bayesian last layer; architectures...
Optimisation: sampling strategy for training,
using, e.g., ridge regression, Sobolev-type
regularisation
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] I |

) | - |
% T, i TRAVIS node - . AnECE | i .
é'tc o Stage 1: Forward Model Diagnostic's k=
o | = >_ Observations ' &
[%2]
é ¢ Stage 2: Single-Diagnostic Inverse (e'ﬁ";e“:'firr::z:epr')e“ IS
c | | B
@ 1 Equilibrium Further ECE |2
% : Magnetic Stage 3: Multi-Diagnostic Inverse and other : &
- | Field < | Diagnostics A

AY /

. Non-Iterative, Direct Inverse Mapping with ML Surrogate Models
ppings

nference from diagnostics
control room (min or even ms scale)
ulting models & knowledge

ald (IPP)

DU)
1nical University of Denmark (DTU)



Team — Backgrounds & Roles

SDU

* Henrik Bindslev — Fusion, Collective Thomson Scattering,
modelling mm-waves in plasmas

* Esmaeil Nadimi-Al/MLin energy and health care applications

* Jan-Matthias Braun-Al/ML in biosignal analysis and adaptive control
* Collaborationwith DTU on Collective Thomson Scattering

IPP

* Daniel Bockenhoff — Al/ML applications for fusion

* Neha Chaudhary - Experiment design & execution

* Pavel Aleynikov & Nikolai Marushchenko - TRAVIS



Outline

Development of surrogate models in three stages

e Stage 1: Surrogate forward model (Dec. 2024)

e Stage 2: Full inverse model for the TRAVIS node (July 2025)

e Stage 3: Full inverse model for combined diagnostics (Dec. 2025)
Further Outcomes

* Integration into the MINERVA framework (June 2025)

* Documentation towards the use of Al models (Dec. 2025)

Stage 1 Model Stage 2 Model Stage 3 Model

May 2024 2025 2026
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