

EUROfusion Science Meeting on results of Enabling Research Projects 2021-2024

Inertial Fusion Project:

Advancing shock ignition for direct-drive inertial fusion ENR-IFE.01.CEA

Dimitri Batani University of Bordeaux, France dimitri.batani@u-bordeaux.fr

Plan of Presentation

The Project

- Examples of performed work
- The HiPER+ proposal

I believe we did a lot of work: this presentation is not exhaustive of all what has been done but rather just presents some significant examples

Only one IFE project has been supported by EUROFusion in 2021-2024

project with about 70% "in kind" contributions in terms of PM

Large impact of NIF results

NIF results provide a validation of the Inertial Fusion concept, achieving ignition

beyond breakeven, and opening the pathway to gain.

For the first time in the U.S., they think on the possibility of developing national projects on Inertial Fusion Energy (IFE) as a future source of energy

• **Basic Research Needs** report: a foundational guide for DOE to establish a national IFE program in the USA

Germany has suddenly changed its attitude towards IFE

 Memorandum on laser IFE for the federal ministry of education and research of Germany (May 2023) and more recently statement of allocation of 1 B€ to fusion research

A big shift from defense-driven research to energy-oriented research

Shock Ignition

- Scheme proposed by R. Betti, J.Perkins et al. [PRL 98 (2007)] and anticipated by V.A.Shcherbakov [Sov.J. Plasma Phys. 9, 240 (1983)]
- Thicker and more massive target at lower implosion velocity V ≈ 240 km/s are intrinsically more resistant against the effect of hydro instabilities
- A final laser spike launches a strong converging shock (≥ <u>300 Mbar</u> at the ablation front). This requires laser intensities ≈ $10^{16} W/cm^2$

Shock Ignition is compatible with present-day laser technology ③

Unknowns of Shock Ignition

- Effect of laser-plasma instabilities at intensities up to ≈ 10¹⁶ W/cm². SRS, SBS and TPD. How they develop? How much light do they reflect?
- Are there many hot electrons and at what energy? What is their effect? (usually in ICF hot electrons are dangerous since they preheat the target... Here they came at late times, large fuel ρ r, so they could indeed be not harmful or even beneficial, increasing laser-target coupling in presence of a very extended plasma corona...)
- Are we really able to couple the high-intensity laser beam to the payload through an extended plasma corona? Are we really able to create a strong shock? (P ≥300 Mbar)

Our project was organized in 5 work packages

- WP1: characterization of hot electrons and hot-electron-driven SI
- WP2: hydrodynamic instabilities and mitigation strategies in DD-SI, including use of foams
- WP3: bipolar SI: direct drive compression and bipolar spike irradiation, new approaches to DD SI, advanced concepts & advanced fuels
- WP4: parametric instabilities and cross beam energy transfer, mitigation using broadband lasers
- WP5: magnetic-field-assisted inertial fusion implosion and ignition.

Achievement of scientific deliverables

Scientific deliverable (annual scientific deliverables as specified in the Task Agreement)	Achieved: Fully/Partly/Not	Evidence for achievement, brief reason for partial or non-achievement
D1.2 Report on HE effects in SI- designed targets (WP1)	Fully	See paper 10 , 18, 19
D2.2 Report on the evaluation on the impact of RT for SI-designed targets (WP2)	Partly	See paper 20, also paper in preparation as result of the PhD thesis of Diego Viala (supervisors A.Colaitis, D.Batani)
D2.3 Report on using foams to mitigate hydro instabilities growth (WP2)	Fully	See papers 7, 9, 16
D3.1 Report on feasibility of bipolar shock ignition and proposal for experiments on LMJ/NIF (WP3)	Fully	See papers 1, 21, 22
D4.1 Report on LPI and CBET in SI conditions (WP4)	Fully	See paper 10, 14, 21
D5.2 Report on the characterization of magnetized HED plasmas over the implosion and at stagnation (WP5)	Fully	See papers 5, 6, 12, 22, 29
D1.1 Report on measurements of HE distribution and HE tail in SI conditions. Optimization of bremsstrahlung cannon, correlation among different diagnostics (WP1)	Fully	See papers 10, 20, 25
D5.1 Design of a magnetized implosion experiment at MJ scale at LMJ or NIF (WP5)	Fully	See papers 5, 6, 22

2023: 32 papers uploaded in the Eurofusion PINBOARD

UROfusion

(C) EUROfusion

C EUROfusion

	First Author	Initi	Title of work	Journal /	Doc.	DOI or status	Pinboar]	First Author	Initi	i Title of work	Journal /	Doc.	DOI or status	Pinboar d ID		First Author	Initi	Title of work	Journal /	Doc. Type	DOI or status	i Pinboar
1	Barlow	D	A New Optimization	Physical Review	Paper	submitted	932			015	Formation for Inertial	conterence	турс	tt.131.01510	u ib			0.5	plasma interaction at Shock	contenence	Type	or paper	0.0
			Methodology for Polar Direct Drive Illuminations at the National Ignition Facility	Letters				14	Cristoforetti	G	Confinement Fusion Multibeam Laser Plasma Interaction at Gekko XII laser facility in conditions relevant	High Power Laser Science	Paper	2 DOI: 10.101 7/hpl.2023.1	84	27	Batani	D	Ignition intensities Future for Inertial Fusion Energy in Europe: A roadmap	High Power Laser Science and	paper	10.1017/hpl. 2023.80	. 52 (2024)
2	Ehret	м	High-repetition-rate source of nanosecond duration kA- current pulses driven by	High Power Laser Science and Engineering	Paper	submitted	900	15	Perez-Callejo	G	for Direct-Drive Inertial Confinement Fusion X-ray imaging and radiation	Review of	Paper	DOI: 10.106	78	28	Kawasaki	к	Effects of hydrogen concentration in ablator material on stimulated Raman	Engineering PHYSICAL REVIEW RESEARCH	paper	https://doi.o rg/10.1103/ PhysRevRes	50 (2024)
3	Nikl	J	High-order curvilinear finite element magneto- hydrodynamics I: A	Journal of Computational Physics	Paper	https://doi.o rg/10.1016/j .jcp.2022.11	897	16	Hudec	L	cylindrical implosions Hybrid ablation-expansion model for laser interaction with low-density forms	Instruments Physics of Plasmas	Paper	DOI: 10.106 3/5.0139488	61	22	N		scattering, two-plasmon decay, and hot electrons for direct-drive inertial confinement fusion			earch.5.033 051	150
4	Hadjikyriacou	A	conservative Lagrangian scheme Novel approach to TNSA enhancement using multi-	Plasma Physics and Controlled	Paper	1158 DOI 10.1088 /1361-	896	17	Papadogiannis	N	Pump-probe reflectivity studies of ultrashort laser- induced acousto-mechanical strains in ZnO films	Applied Physics A	Paper	DOI: 10.100 7/s00339- 023-06837-1	57	29	Pisarczyk		influence of the magnetic field on properties of hot electron emission from ablative plasma produced at laser irradiation of a disc-coil	Plasma Physics and Controlled Fusion	paper	10.1088/136 1- 6587/ac95c4	(2022)
5	Vlachos	с	layered targets a numerical study Laser-driven quasi-static B- fields for magnetized high	Fusion Physics of Plasmas	Paper	6587/acdc51 submitted	895	18	Tentori	A	3D Monte-Carlo model to study the transport of hot electrons in the context of Inertial Confinement Fusion:	Matter and Radiation at Extremes	Paper	DOI: 10.106 3/5.0103632	32	30	Tamagawa	т	target Development of an experimental platform for the investigation of laser-plasma integration is an efficiency of the second	Rev. Sci. Instrum	paper	doi: 10.1063/5.0 089969	49 (2024)
6	Bailly- Grandvaux	M	energy-density experiments Impact of strong magnetization in cylindrical	Physical Review Research	Paper	DOI: 10.1103/Phy	894	19	Tentori	A	Part II 3D Monte-Carlo model to study the transport of hot electrons in the context of	Matter and Radiation at Extremes	Paper	DOI: 10.106 3/5.0103631	32	31	Salvadori	м	relevant to shock ignition regime Univocal discrimination of	Laser and	paper	DOI: 10.115	360
			applied B-field measured via X-ray emission spectroscopy			h.6.L012018		20	Colaitis	A	Inertial Confinement Fusion: Part I 3D simulations of Inertial	Plasma Physics	paper	DOI: 10.108	382				alpha particles produced by 11B(p,alpha)2alpha fusions in laser-matter experiments by advanced Thomson	Particle Beams		5/2023/783 1712	(2022)
7	Paddock	R	Measuring the principal Hugoniot of ICF-relevant TMPTA plastic foams	Physical Review E	Paper	https://doi.o rg/10.1103/ PhysRevE.10 7.025206	858				implosions part 2: systematic flow anomalies and impact of low modes on performances in OMEGA experiments	Fusion		6587/aca78 d	(2022)	32	Sciscio	м	Spectrometry High sensitivity Thomson spectrometry in experiments of laser-driven low-rate neutron-less fusion reactions	Laser and Particle Beams	paper	DOI: 10.115 5/2023/353 1875	423 (2022)
8	Barbato	F	Feasibility study of an XPCI diagnostic to observe the evolution of micro-voids in an ICF target	Plasma Physics and Controlled Fusion	Paper	DOI 10.1088 /1361- 6587/ad1a4 2	839	21	Colaitis	A	3D simulations of Inertial Confinement Fusion implosions part 1: inline modeling of polarized cross	Plasma Physics and Controlled Fusion	paper	DOI 10.1088 /1361- 6587/aca78 e	381 (2022)								
9	Maffini	м	Numerical Study of Carbon Nanofoam Targets for Laser- Driven Inertial Fusion	Laser and Particle Beams	Paper	https://doi.o rg/10.1155/ 2023/12144	837	22	Perez-Callejo	G	subsequent drive anomalies on OMEGA and NIF A cylindrical implosion	Physical Review	paper	DOI: 10.110	218								
10	Cristoforetti	G.	Experiments Investigation on the origin of hot electrons in laser plasma interaction at chock intition	Scientific Reports	Paper	30 https://doi.o rg/10.1038/s	782	23	Savino	1	platform for the study of highly magnetized plasmas at LMJ Studies on dynamical shell	E Il Nuovo	paper	3/PhysRevE. 106.035206	(2022)								
			intensities			41598-025- 46189-7			Savino		formation for direct-drive	Cimento C	paper	3/ncc/i2022-	(2022)								
11	Chrisment	A	Analysis of a kinetic model for electron heat transport in inertial confinement fusion plasmas	Physics of Plasmas	Paper	DOI: 10.106 3/5.0107034	307	24	Atzeni	S	Breakthrough at the NIF paves the way to inertial fusion energy	Europhysics News	paper	DOI: https:// doi.org/10.1 051/epn/20 22106	54 (2024)								
12	Pisarczyk	Т	Strongly magnetized plasma produced by interaction of nanosecond kJ-class laser with spail targets	Plasma Physics and Controlled Fusion	Paper	DOI: 10.108 8/1361- 6587/acc421	203	25	Batani	D	Advances in the Study of Laser-Driven Proton-Boron Fusion	Laser and Particle Beams	paper	doi.org/10.1 155/2023/9 824024	55 (2024)								
13	Igumenshchev	I	Proof-of-Principle Experiment on the Dynamic Shell	Physical Review Letters	Paper	DOI: 10.110 3/PhysRevLe	107	26	гшрроу	E	electrons generated by laser-	Radiation at Extremes	paper	rg/10.1063/ 5.0157168	(2024)								

2024: 12 papers uploaded in the Eurofusion PINBOARD

874 D Batani et al. "Equation of state for boron nitride along the principal Hugoniot to 16 Mbar" Matter and Radiation at Extremes

863 <u>M Sciscio</u> et al. "Laser initiated p-11B fusion reactions in petawatt high-repetition-rates laser facilities" Matter and Radiation at Extremes

844 <u>D Viala</u> et al. "Comparison of chamber beam geometry robustness to mispointing, imbalance and target offset for direct-drive laser fusion facilities" Nuclear Fusion

174 <u>A. Zaras-Szydlowska</u> et al. "Interferometric measurements of plasma expansion induced by the interaction of a femtosecond laser pulse with a solid Al target, performed at the High Power Laser Laboratory at IPPLM" Physics of Plasmas

62 S. Singh et al. "Hot electron emission characteristics from thin metal foil targets irradiated by terawatt laser" Laser and Particle Beams

61 <u>S. Singh</u> et al. "Hot electron and x-ray generation by sub-ns kJ-class laser-produced tantalum plasma" Plasma Physics and Controlled Fusion

55 D Batani et al."Advances in the Study of Laser-Driven Proton-Boron Fusion" Laser and Particle Beams

54 S Atzeni et al."Breakthrough at the NIF paves the way to inertial fusion energy" Europhysics News

53 <u>E Fillipov</u> et al. "Characterization of hot electrons generated by laser-plasma interaction at Shock Ignition intensities" Matter and Radiation at Extremes

52 D Batani et al. "Future for Inertial Fusion Energy in Europe: A roadmap" High Power Laser Science and Engineering

50 <u>K Kawasaki</u> et al. "Effects of hydrogen concentration in ablator material on stimulated Raman scattering, two-plasmon decay, and hot electrons for direct-drive inertial confinement fusion" Physical Review Research

48 <u>T Tamagawa</u> et al. "Development of an experimental platform for the investigation of laser-plasma interaction in conditions relevant to shock ignition regime" Review of Scientific Instruments

Plan of Presentation

The Project

Examples of performed work

The HiPER+ proposal

Some examples of recent research work

Collaboration with the Omega laser facility

> Experiment directly supported by the EUROFusion Enabling Research Project on Shock Ignition

Omega Experiment: Laser beam with characteristics relevant to SI scheme focused on multi-layer planar target to produce a strong shock and hot electrons

Shock propagation: Time resolved X-ray radiography 0.50 ns 0.75 ns 300 400 200 300 400 1.25 ns 1.50 ns

D.Batani et al.

EUROFUSION Report – November 2024

Shock Velocity and Pressure: effect of hot electrons

Hot electrons: were characterized using bremsstrahlung and K_α emission on spectrometers

Two diagnostics measure the K_{α} emission from copper: ZNVH: Zinc Von Hamos, crystal reflection recorded on IP. HRS: High Resolution Spectrometer, recorded on CCD.

One diagnostic (BMXS) measured bremsstrahlung emission

A. Tentori et al. Physics of Plasmas 28, 103302 (2021)

• Hot electron temperature \approx 25 keV (*good news for shock ignition*) and energy conversion of 10%, i.e. a total energy of \approx 60 J

• Pressure increases from 125 to 150 Mbar and shock velocity from 100 to 130 km/s

D.Batani et al.

Experimental results reproduced only taking hot electrons into account

Hot electrons measurement by Bremsstrahlung and K_{α} must be compared to hydro results to completely constraint the HE distribution. In our experiment $T_{hot} \sim 26$ keV with an energy conversion of 11% (good news for Shock Ignition)

Heating and expansion of Cu layer due to hot electrons

D.Batani et al.

Collaboration with China (PKU, IAPCM, LFRC)

 $\rho^{3/3}$

★** **

To get high gain we need quasi-isentropic compression

$$\alpha \equiv \frac{p}{p_F} \implies \text{(for DT plasma)} \qquad \alpha_{DT} \equiv \frac{p(Mb)}{2.2\rho(g/cc)^{5/3}}$$

Bulk modulus hexagonal BN 37 Gpa Bulk modulus cubic BN 369 Gpa Bulk modulus diamond 530 GPa The use of diamond ablator has been a key ingredient in achieving gain.

However, in current experiments the first shock is set at 12 Mbar, above the HDC melting point. In other words, the high bulk modulus and high melting temperature of diamond imply that we cannot go to low entropy parameters α

EoS data for BN (laser Omega)

EoS platform at SG-III prototype

- 8 beams/1~3ns/351nm-1200J/beam, 500-2000um/CPP+SSD
- 9th beam-4kJ/5ns, 20ns pulse shaping ability

• Diagnostic: VISAR(2 legs at 532nm 10-50km/s), SOP(calibrated), XRD, XPHC

Indirect Drive (SG III P)

Al substrate (1 mm X 1 mm X 60 μm) BN Parallelepiped (0.8 mm X 0.4 mm X 60 μm) Reference material Parallelepiped (0.8 mm X 0.4 mm)

D.Batani et al.

EoS data for BN (laser SG III P)

Huan Zhang, Yutong Yang, Zanyang Guan, Xiaoxi Duan, Mengsheng Yang, Weimin Yang, Yonggang Liu, Jingxiang Shen, Katarzyna Batani, Diluka Singappuli, Yongsheng Li, Wenyi Huo, Ke Lan, Hao Liu, Yulong Li, Dong Yang, Sanwei Li, Zhebin Wang, Jiamin Yang, Zongqing Zhao, Weiyan Zhang, Liang Sun, Wei Kang, and Dimitri Batani "Equation of state of for boron nitride along the principal Hugoniot to 16 Mbar" *Matter Radiat. Extremes* (2024)

D.Batani et al.

LPI: Classical Direct Drive vs. Shock Ignition

Work on Parametric Instabilities and hot electrons An example: experiments at the PALS laser Prague

The PALS lodine Laser $\lambda = 1.3 \ \mu m \ \tau = 300 \ ps \ E = 1500 \ J$ $3\omega \ \lambda = 0.44 \ \mu m \ E \le 500 \ J$

Work on Parametric Instabilities and hot electrons Timing of parametric instabilities and HE

D.Batani et al.

Approaching Shock Ignition conditions

	Multi beam	Lambda (nm)	Intensity (W/cm²)	y lλ² (Wμm²/cm²)	L (μm)	T (keV)	Bandwidth / Chirp			
GEKKO XII	YES	351	1.5x10 ^{1!}	⁵ 2x10 ¹⁴	100	1-2	NO/NO			
PALS	NO	438 <mark>1314</mark>	5x10 ¹⁵ 1.5x10 ¹⁶	1x10 ¹⁵ 5 2.5x10 ¹⁶	100 100	<mark>1-2</mark> 3-4	NO/NO			
ELI-BL	NO	532	10 ¹⁴ - 10 ³	¹⁵ 3x(10 ¹³ -10 ¹⁴)	100	1	NO/YES			
Vulcan	NO	532	1x10 ¹⁶	3x10 ¹⁵	400	1-2	NO/YES			
LMJ	YES	351	3.5x10 ¹⁵	⁵ 4.3x10 ¹⁴	480	4.5	NO/NO			
Sh	ock Ignitior ultibeam 30	regime 5, I = 10 ¹⁶ V	V/cm ²	Different facilities can be used to investigate the role of different parameters						
L=	500 μm, T	=3-5 keV	-	Lack of dedicated facility in Europe						

Broadband effects on LPI

The Fourth-generation Laser for Ultrabroadband eXperiments

Experiments at ELI–L4 laser, Vulcan, Phelix, and in the future at the Chinese laser installation Kunwu in the Shanghai Institute of Laser Plasma ($\Delta\omega/\omega_0 \sim 0.55\%$)

D.Batani et al.

Broadband effects on LPI: Vulcan experiment

LASER IRRADIATION DESIGN (PLANAR)

4 driver/heating beams (long beams) E=250 J x 4, λ =1053 nm, 3 ns FWHM=800 μ m, I \approx 3x10¹³ W/cm²

interaction beam B8 bypassing compressor E= 100-150 J, λ =527 nm, 0.7-1.0 ns, RPP FWHM \approx 40 μ m, I \approx 10¹⁶ W/cm² , f/# \approx 2.5

3 oscillators:

Option	SHG Duration (ps)	SHG Bandwidth (nm) (%)	Chirp Rate (nm/ns)
Narrowband	770	Fourier limited	0
OPO phosphate amp.	680	0.77 nm 0.15%	0.95
OPCPA Silicate amp.	1100	1.77 nm 0.34%	1.22

BACKSCATTERING DIAGNOSTICS

Preliminary results from Vulcan experiment

Stimulated Raman Scattering

D.Batani et al.

Multibeams effects on LPI: GEKKO XII experiment

Multibeam effects - SRS

Spectrometer located behind the last mirror of beam #1

SRS scattered light is not purely backscattered but affected by other laser beams

Both SRS and 3/2 ω intensity scales with overall energy/intensity and not with single beam intensity.

These results are an evidence of collective growth of SRS and TPD

Impact of Side SRS

D.Batani et al.

EUROFUSION Report – November 2024

30/43

Impact of Side SRS

Side SRS: PALS 2023 experiment

G. Cristoforetti, S. Agarwal, D.Batani, M. Cervenak, P. Devi, R. Dudzak, D. Ettel, P. Gajdos, K. Glize, E. Hume, S. Jelinek, L. Juha, P.Koester, M. Krupka, M. Krus, H. Larreur, G. Malka, D. Mancelli, A. Morace, P. Nicolai, O. Renner, D. Singapulli, S. Singh, M. Tatarakis, Y. Wang, N. Woolsey, X. Zhao, L.A. Gizzi

Approaching Shock Ignition conditions

	G. Cristoforetti et al., G. Cristoforetti et al.,	Euro Phys. Lett., 117, 35001, 2017 Phys. Plasmas 25, 012702, 2018						
GEKKO XII	D. Batani et al., Nucl. G. Cristoforetti et al., S. Baton et al., High E	Fusion, 59, 032012, 2019 HPLSE, (2019), Vol. 7, e51 nergy Density Physics 36, 100796, 2020						
PALS	P. Koester et al., Revie G. Cristoforetti et al.,	ew of Scientific Instruments 92, 013501, 2021 HPLSE, (2021), Vol. 9, e60						
ELI-BL	G. Cristoforetti et al., HPLSE, Vol. 11, e24, 2023							
Vulcan	F. Wasser et al., <i>Rev.</i> E. Filippov et al., MRE	<i>Sci. Instrum.</i> 94, 093503, 2023 RE 8 (6), 065602, 2023						
LMJ	G. Cristoforetti et al, s F. Wasser et al., Phys.	, Sci. Rep., 13, 20681, 2023 <i>s. Plasmas</i> 31, 022107, 2024						
Sho Mu L=5	ck Ignition regime Itibeam 3ω, I = 10 ¹⁶ W/cm ² 00 μm, T=3-5 keV	Different facilities can be used to investigate the role of different parameters						

Lack of dedicated facility in Europe

Design of Magneto-Inertial Fusion Experiments

D.Batani et al.

Implosions at OMEGA with seed B-fields

Experimental setup Cylindric plastic shells filled with D₂ at 11 atm with 0.15% atomic concentration of <u>Ar doping for</u> spectroscopic tracing

Ar K-shell spectra characterize core plasma conditions

Heα shot#101433. MIFEDS off, shell thickness: 19.8 um Lyα shot#101434, MIFEDS on, shell thickness: 19.8 µm 100 B₀=0T \rightarrow Systematic intensity ratios suggest 80 Bo=24 Intensity (arb. units) 0 0 09 a hotter core for the magnetized implosions Неβ Lyβ Heγ Lyγ 3000 3200 3400 3600 3800 4000 4200 Photon Energy (eV)

Experimental time-integrated Ar K-shell emission

Modelled Ar K-shell emission

→ Observations qualitatively predicted by synthetic spectra simulations

D.Batani et al.

Extension to LMJ with 20x higher drive energy

Setup at LMJ – shots scheduled in 2024 - 2026

- External pulsed power for B-field unavailable at LMJ
 - Alternative use of laser-driven coils with predicted seed B-field in the 5 to 10 T range
- Preliminary shots done in 2022 to characterize magnetic field generation

Compared to OMEGA :

- 20x more laser-drive energy
- 2.3x larger targets
 - → Greater compression ratio and larger core

G.Pérez-Callejo et al., Phys. Rev. E, 106, 035206 (2022)

Plan of Presentation

The Project

Examples of performed work

The HiPER+ proposal

HIPER+ initiative

- In September 2021 a group of scientist started the HiPER+ Initiative
- Today HiPER+ group is composed by a nucleus of 15 scientist supported by more than 100 scientists from EU.

High Power Laser Science and Engineering, (2023) doi:10.1017/hpl.2023.80

REVIEW SPECIAL ISSUE ON ICF

Future for inertial-fusion energy in Europe: a roadmap

Dimitri Batani¹, Arnaud Colaïtis¹, Fabrizio Consoli¹, Colin N. Danson^{3,4}, Leonida Antonio Gizzi⁵, Javier Honrubia⁶, Thomas Kühl⁷, Sebastien Le Pape⁸, Jean-Luc Miquel⁹, Jose Manuel Perlado¹⁰, R. H. H. Scott¹¹, Michael Tatarakis^{12,13}, Vladimir Tikhonchuk^{1,14}, and Luca Volpe^{6,15}

D.Batani et al.

On what we build: The EU IFE community

2005-2014 European Project "HIPER" (High Power Laser Energy Research Facility)

HiPER, conceived as a large-scale laser system designed to demonstrate significant energy production form ICF, was listed on the ESFRI large scale facility roadmap and awarded preparatory phase funding (~2 M€) by the EU with additional funding from STFC, UK, and the Ministry of Education, Czech Republic, and work in-kind from many other partners

The project was based on the assumption that NIF would ignite during the National ignition Campaign (2009-2012)

www.hiper-laser.org

On what we build: The EU IFE community

HiPER+ community is expanding and gaining consensus

D.Batani et al.

EUROFUSION Report – November 2024

40/43

HiPER+ timeline

3 major steps of 10 years each: produce knowledge, build the machine, produce and analyze results for the technology transfer

Years 1-10	Years 11-20	Years 21-30
R&D	Pilot IFE reactor	DEMO-IFE reactor

Synergies with companies and national projects can somewhat accelerate this time scale...

Major axes of research & technology development

A: physics & technology for IFE	B: development of IFE laser technology	C: material science & reactor technology	D: development of community, coordination & management

Next steps: Applications for MSCA Doctoral network, COST Actions, Europena Innovation Council, ERC Synergy Grants, finally proposal to be submitted to ESFRI

For comparison: NIF high gain expected in 2028 (G \sim 20 ?) LMJ full operation at 1.3 MJ expected in 2027 First plasma in ITER expected not before \sim 2025 (?)

Important "side" activities from our network

Strong activity on summer schools

- "Plasmas in Superstrong Fields" Erice, Sicily, July 2022
- LaPlaSS "Experimental methods in high-intensity laser-plasma processes" Salamanca, Spain, September 2020
- LaPlaSS "High-intensity laser-plasma processes for laser fusion and related applications" Salamanca, Spain, September 2023
- Intensive School on Laser, Plasma and Fusion, Rethymno, Crete, September 2024

Collaboration with the Coordinated Research Project of IAEA on "Pathways to Inertial Fusion Energy"

Collaboration in organizing the ELI "Laser-induced Fusion Meeting" Prague, 28-29 November 2023

Collaboration with the LASERLAB expert groups on "Micro- and nanostructured materials for experiments with high-power lasers" and on "Inertial Confinement Fusion / Inertial Fusion Energy"

Collaboration with the (approved) COST project ProBoNo «PROton BOron Nuclear fusion: from energy production to medical applicatiOns"

Attention to the new "industrial environment" for Nuclear Fusion

D.Batani et al.

Thank you for your attention !

D.Batani et al.