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Our goal is to combine experimental investigations of new functional materials used in diagnostics,

heating and current drive applications in fusion reactors with large-scale theoretical calculations to

provide an exhaustive understanding of material behaviour and predict the corresponding properties

which are of high relevance for DEMO.

The main project tasks are divided between four Work Packages:

WP1. Advanced characterization of functional materials before and after irradiation

WP2. Investigation of electric, dielectric and mechanical properties of nonirradiated and

irradiated materials

WP3. Theoretical modelling of the doping and radiation-induced effects

WP4. Material expertise for fusion applications (series of meetings)

Combination of traditional techniques (optical absorption, IR spectroscopy, luminescence, EPR)

with Raman and neutron scattering, determination of electrical/microwave properties via high

frequency FABRY-PEROT-resonators and THz spectroscopy and electrical and thermal conductivity

measurements in order to monitor the development of the radiation damage in doped diamond

and related materials. Of great importance − determination of a specific role of impurities, which

could improve/worsen radiation resistance.



Sample 

No. Material Diameter Thickness Irradation

mm mm n/m2

ERIV_62-1

CVD-

Diamond 30 0,69 1E+22

ERIV_56-1

CVD-

Diamond 30 1,31 1E+21

ER_Lot10

CVD-

Diamond 30 1,11 1E+24

ER_Lot01

CVD-

Diamond 30 1,11 0

3Qu04 Silica 30 1,005 1E+22

4Qu04 Silica 30 3,041 1E+22

3Qu07 Silica 30 1 1E+21

4Qu07 Silica 30 3 1E+21

4Qu09 Silica 30 3 0

Al_146 Alumina 40 4 0

Al_166 Alumina 40 4 0

neutron-irradiated/pristine samples

GERMANY

3

d =30 mm

1011 1012 1013 3.81013 Xe/cm2      

42 mm
56 mm

No. 1             No. 2          No. 3

No. 4              No. 5          No. 6

Irradiation by 36-MeV 127I ions, 5-mm disks

Irradiation by 231-MeV 132Xe ions 

Mainly CVD diamond disks − polycrystalline samples of 

different diameter produced via Chemical Vapor Deposition 

by Diamond Materials, Freiburg (Germany), 

only a few single crystal diamond  (SCD) samples

d = 5 mm
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Characterization of  virgin/irradiated materials via 

cathodoluminescence (steady-state regime, 10-keV 

electron beam, 5 or 295 K
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The #1 set of pristine 5-mm CVD diamond disks. 

CL spectrum varies from sample to sample

2 3 4 5

measured for irradiated  strip
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I ions  
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20
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h eV

Drastic (about two

orders of magnitude)

and spectrally not

selective drop of CL

intensity in Iodine-

irradiated samples.
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Figure. Steady-state CL spectra measured at 5 K under 10-keV

electron excitation of CVD diamond disks before (pristine, blue

lines) and after expose to 231-MeV xenon ions with different

fluences (red lines). Ordinates of some curves for irradiated

samples are multiplied by a prescribed factor.

Again, new pristine samples do not

demonstrated the heterogeneity

estimated via CL. As a result, the

analysis of CL spectra for Xe-irradiated

discs did not allow to establish a clear

fluence-effect relationship.
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Characterization of  virgin/irradiated materials via cathodoluminescence 

(steady-state regime, 10-keV electron beam, 5 or 295 K

The #2 set of pristine5-mm CVD diamond disks, before and after irradiation 

with 231-MeV Xe ions
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2D mapping of virgin & neutron-irradiated CVD samples by cathodoluminescence spectra
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CL spectra for a virgin and

n-irradiated samples at the 

beginning (solid lines) and after 

15-min excitation by an e-beam 

(dashed lines).

Defect-related

emission ?

 up to 30 mm 
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Characterization of virgin/neutron irradiated CVD diamond via infrared spectroscopy (ISSP-UL) 

LATVIA

5000 cm-1 = 0.62 eV

1000 0.124

10000 1.24 eV

Spectrometer Vertex 80v (Bruker)

Resolution = 2 cm-1
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TriVista Raman spectrometer

2D Mapping of large diamond disks
LATVIA

Raman shift,
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Literature

interpretation
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Comparative analysis/ 2D mapping of pristine/231-MeV Xe-irradiated CVD disks  (ISSP-UL) 

… via Raman spectroscopy
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Figure. Raman spectra of CVD diamond disks before and

after expose to 231-MeV Xe ions with different fluence.

The spectra are measured at 14 different spot positions

of 525-nm laser excitation on disk No. 2 irradiated with

1012 Xe/cm2 (2D-mapping – parts (c) and (d) for different

spectral regions).

LATVIA

Raman spectra contain a single mode at 

1332 cm-1. The bands related to nitrogen 

vacancies (NV0 at 1400 and NV- at at 3100 

cm-1) − no substantial changes for pristine 

and irradiated CVD disks.

The 1332-cm-1 modes (see part b) broadens, 

shifts to lower frequencies, and transforms to 

asymmetric with irradiation fluence −

a local structural disorder induced in 

diamond samples by Xe-irradiation.

Parts (c) and (d) − 2D mapping
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… via FTIRLATVIA
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Figure. FTIR absorbance spectra of CVD

diamond disks before (pristine) and after

expose to 231-MeV xenon ions with

different fluence. The spectra are similar for

all four disks under investigation (labelled by

number in a relevant figure part).

800100012001400

(c)

N
or

m
al

iz
ed

 a
bs

or
ba

nc
e,

 a
.u

.

Wavenumber, cm
-1

 No. 1 pristine 

 10
11 

Xe/cm
2

 10
12

 Xe/cm
2

 10
13

 Xe/cm
2

 10
14

 Xe/cm
2

15001800210024002700

(b)

N
o
rm

al
iz

ed
 a

b
so

rb
an

ce
, 
a.

u
.

Wavenumber, cm
-1

 No. 3 pristine

 10
11 

Xe/cm
2

 10
12

 Xe/cm
2

 10
13

 Xe/cm
2

  10
14

 Xe/cm
2

b - the characteristic C–C band

at 2600-1600 cm-1 shows no

significant alteration before and

after Xe-irradiation of diamond.

c - Irradiation → appearance of

nitrogen defect bands 1700-500

cm-1. This change likely relates to a

modification in the state of N defects.

Comparative analysis/ 2D mapping of pristine/231-MeV Xe-irradiated CVD disks  (ISSP-UL) 
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Electron backscatter diffraction in boron-doped CVD diamond) 

GERMANY

EBSD chart for a p-Boron-doped

CVD diamond (with the directions

parallel to the growth direction. Color

coded map: Inverse pole [001] crystal

direction (growth direction). Miller

Index legend to the color scheme.

200 m

200 m 200 m

EBSD charts for a B-doped CVD diamond with all grains in a 15° tolerance field related

to the [110] direction (left part, 65% of area) and the same for 10° (right, 40% of area).

Pole pictures for the [101], [111] and [111]

directions (upper part) and a misorientation

chart (lower part) for a B-doped diamond.
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The p-doping level of  

Boron  atoms was 

estimated using Van 

der Pauw method as 

 21018 cm-3
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EBSD measurements … of diamond and the interface passivation layers (KIT) 

GERMANY

EBSD charts for a single crystal diamond (left,

inverse poole mapping) and SiO-coated side

with a green-colored damaged regions (right).

Pole figures for the basic crystallographic

directions for the uncoated side.

100 m700 m

The uncoated side (left) is a perfect single

crystal without any grain boundaries.

According to the EBSD data, the SiO-coating

is presumably not crystalline (no diffraction

patterns in undamaged coated areas).

Green-colored regions − a small damage of the

SiO surface due to sample handling (right).

The crystallographic properties of a single crystalline diamond passivated with a

layer of SiO (ca. 100 nm thick)

SiO – Sublimation 

evaporation
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Report 31/12/2023

1. Literature review on radiation defect thermal annealing in selected materials   Fully

2. Comparative analysis of the thermal annealing of radiation damage 

via OA, EPR, TSL, RAMAN/IR of the selected samples irradiated at different fluences Fully

3. Computational modelling of the influence of radiation-induced disordering 

on the annealing kinetics of radiation defects in diamond Fully

4. Detailed comparative analysis of dielectrical electrical, and EBСSD properties of 

selected materials irradiated with varying fluences DONE Partly

5. EBSD measurements of both diamond types and the interface passivation layers Fully

6. First principles calculations of radiation defects in AlN and SiO 

7. Comparative 2D mapping of the oversized irradiated samples by Raman, IR and CL Fully

8. Modeling of radiation defect annealing in AlN and SiO.

9. Comparative inelastic and small angle neutron scattering of 

selected heavily irradiated samples at ILL TRIED Partly

Plans (Task specification) for 2023
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Detailed comparative analysis of … EBSD  …  irradiated with varying fluences (KIT) 

GERMANY Electron backscatter diffraction (EBSD) − grain orientation in  polycrystalline diamond

1 mm

Color coded maps for Xe-irradiated 

CVD diamond discs (crystallographic 

directions parallel to the growth direction, 

irradiated side = growth side, black lines 
represent boundaries >15° misorientation).    

1 mm

Sample N1, 1011 cm-2, 6400

grains (center region)

Sample N4 3.81013 cm-2,

5900 grains (center region)

Samples N2 and N3 were Xe-

irradiated from nucleation site (NS),

the grain size was too small to get

an EBSD evaluation. Therefore, an

electronic backscatter image was

measured
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Detailed comparative analysis of … EBSD  …  irradiated with varying fluences (KIT) 

GERMANY
Electron backscatter diffraction (EBSD) − grain orientation in  polycrystalline diamond

ID irradiated side Xe ion fluence

/cm-2

average grain size 

(>15°)by number

/µm 

average grain size 

(>15°) by area

/µm 

fraction all (Σ3) 

CSL boundary*

%

N1 growth side 10E11 22.2 83.5 60 (45)

N2 nucleation side 10E12 x x x

N3 nucleation side 10E13 x x x

N4 growth side 3.8x10E13 23.7 85.2 60 (43)

Comparison of pristine/irradiated samples shows − there is no influence on the surface

microstructure caused by irradiation with the Xe ions, independent on the ion fluence.

There is no influence of the crystal orientation by irradiation. The defects introduces by

irradiation are on a much smaller scale and can not be detected with EBSD technique.
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Figure: Left − Sample holder used for the Laue measurements.

The sample position is indicated by the blue spot.

Right − Schematic view of the Laue instrument OrientExpress

@ ILL. Neutron beam is collimated before it transverse the

central axis of the camera. After backscattering on the sample,

the neutrons are registered by the scintillator/CCD cameras

REPORT on test

The diamond single crystalline sample came from KIT (PO#:

20762103) and had dimensions 88 mm2 with a thickness of 45

to 47 mm, leading to a total mass of about 10 mg.

Conclusion on May 2024: The provided single crystal

diamond sample was to small for measurements

The second, a boron-doped

polycrystalline diamond

sample was used for testing

the Laue picture (no Bragg

scattering).

ABOUT PLANNED Neutron spectroscopy of diamond

samples at ILL Grenoble and phonon spectra aqnalysis.

We planned to use a beamline IN8 with a high-flux three-

axis thermal neutron spectrometer designed to measure

inelastic neutron scattering on single crystals in a wide

energy and momentum transfer range.

Problems −− Long-term shutdown due to renovation.

In near future, Prof. Theo Scherer plans to repeated the measurements at IN8, ILL 

(Grenoble) with the diamond samples of suitable size/volume (from Japan). 



Theoretical activities included the first principles calculations of the atomic, electronic, vibrational

properties and dielectric properties of basic defects in diamond and AlN. The state of the art first

principles methods using the CRYSTAL17 computer code within the linear combination of atomic

orbitals (LCAO) approximation and VASP plane wave code have been used.

For defects in diamond − the supercells containing 64 C atoms each and

periodically repeated defects; a few basis sets for C, unrestricted DFT with B1WC as

well as B3LYP advanced hybrid DFT with exchange-correlation functionals.
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Results of our computational simulation of

a neutral vacancy (Va, left) and a

nitrogen substitutional atom (Ns defect,

right) in diamond.

Computation simulations of the atomic, electronic, vibrational properties as well as the 

properties of basic lattice defects in diamond and related materials (ISSP-UL) 

LATVIA
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(ISSP-UL) The calculations of harmonic phonon frequencies at the Γ point, IR and Raman 

spectra, dielectric functions (loss tangent) have been  performed for defective diamond. 
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(ISSP-UL) 

LATVIA
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Results of the first principles calculations of the IR, Raman and loss

tangent spectra of a nitrogen substitutional atom (Ns defect or C

center) and in vacancies in diamond (Ib diamond) were published in

[9 ] Diamond and Related Materials 130 (2022) 109399, ID35232

[11] Opt. Mater., 150 (2024) 115222, ID35232

The energies and charge and spin distribution  of several defects  (mono-

substitute N in different charge state’; Ns-H and N2V defects in diamond have 

been calculated as well:

[6] Materials 16 (2023) 1979 ID34871

[7]  J. Chem. Phys. 160 (2024) 034705 ID36689

[11] Phys. Chem. Chem. Phys. 2024 DOI: 10.1039/D4CP02309A   ID35808

The main conclusion on diamond − both defects (Va, Ns) produce

negligible (10-7) loss tangent in the operational range 140-206 GHz,

needed in fusion reactors for plasma heating and stabilization via

diamond windows. Other defects such as B or larger pores/surfaces

should be checked.

N2V



LATVIA

First principles calculations of the atomic/electronic structure and the lattice vibrational spectra as well  

basic radiation defects for AlN and have been performed. [12] Condens. Matter (MDPI) submitted ID36688
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[2] Opt. Mater. 135 (2023) 113250, ID33491 

Alumina transparent ceramic disks, irradiated by fast neutrons 

(E > 0.1 MeV, fluences of 1021, 1022 and 1023n/m2 ) at Joint 

Research Center (Petten, Netherlands).

Annealing kinetics of radiation defects measured via 

the EPR method   … in alumina

LATVIA
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Conclusions: for both defects ther migration energy depends on dose! Quantum 

chemical calculations are needed for final interpratation of recombination

mechanism. Suggestion: mobile non-bonding oxygen atoms recombine with E,

while O atoms diffusion causes the decay of peroxy radicals.

Experimentally measured annealing kinetics of EPR-active radiation defects and their theoretical 

modelling    … in neutron-irradiated silica

[13] Opt. Mater. sumbitted, ID36710

E centers O2
- peroxy radicals
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Figure. The experimental annealing kinetics of the E' centers

(symbols) in a dry synthetic S300 silica with 1 ppm of OH (from

Ref. [12]). Lines – theory for the E' (solid) and complementary

oxygen interstitials (dashed).

The kinetics is modelled in terms of diffusion-

controlled bimolecular reactions and assuming

two types of oxygen interstitials, which

recombine with immobile E′ centers (an oxygen

vacancy). The estimated migration energies Ea of

interstitials are 0.35 and 0.80 eV, respectively

(dotted lines).

Mobile interstitials (labelled as HA and HB) are

tentatively associated with the non-bridging

oxygen hole centers and the O2
- peroxy radicals.

[5] J. Nucl. Mater. 579 (2023) 154381. ID34869

Theoretical analysis of the defect annealing in silica

samples with different OH content irradiated by

neutrons or gamma-rays (from literature data).

Experimentally measured annealing kinetics of radiation defetcs and their theoretical modelling   

… in silica
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5-mm-diameter (0.4 mm thickness, Diamond Materials, Freiburg) novel

disks of CVD diamond have been characterized via optical

absorption, EBSD, CL, FTIR and Raman methods before and after

irradiation by 231-MeV 132Xe ions at RT (Astana Kazakhstan) with 4

different fluences. According to SRIM, ion range R= 18.7 m.

University of Tartu

ESTONIA

Annealing kinetics of radiation defects measured via optical absorption  (UT) 
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The carbon vacancies (GR1, a neutral
vacancy) are mainly responsible for
RIOA around 2 eV, while
complementary C-interstitial-related
defects R11 tentatively absorb at about 4
eV (i.e. a carbon interstitial-vacancy
Frenkel pair).

Narrow bands around 2.5 eV are
tentatively nitrogen-related complex
defects, a number of which was detected
in Raman and FTIR spectra of the same
pristine and Xe-irradiated CVD
diamond samples.
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Theoretical analysis of the experimental kinetics of interstitial-

vacancy carbon Frenkel defects (absorption at 4.1 eV and 2.0 eV,

respectively) in CVD diamond disks shows the migration energy of

the interstitial ions as quite low, of the order of 0.2-0.4 eV, that

could be related to a strong structural distortion upon heavy swift

ion irradiation. The diffusion prefactors X show a very good

correlation with the migration Ea, which is known as the Meyer-

Neldel rule in chemical kinetics.

[10] Crystals 14, (2024) 546 ID38109    
−

−

−

−
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Main conclusions and suggestions

CVD diamond shows no structural defects in the order of grain size (size and distribution); there is no

influence of the crystal orientation by irradiation. Single crystalline diamond shows no structural (large size

crystal defects via EBSD measurements as well.

The single 1332-cm-1 Raman mode in CVD diamond broadens, shifts to lower frequencies, and transforms

to asymmetric with irradiation fluence − a local structural disorder induced in diamond samples by Xe-

irradiation.

Based on FTIR measurements, Xe-irradiation leads to the the appearance of N defect bands at 1700-500

cm-1 (not detectable in a pristine CVD diamond) tentatively due to radiation-induced modification in the state

of N defects On the other hand, the analysis of the characteristic C–C band at 2600-1600 cm-1 shows no

significant alteration with Xe-irradiation.

The degradation of CVD disks starts above 650 °C and prevents a total annealing of radiation damage

(recovery from damage) measured via radiation-induced optical absorption.

Advanced theoretical analysis of the defect annealing under different fluencies allows to predict the kinetics

of defect accumulation under different external conditions.

Based on theoretical calculations, diamond lattice defects such as Va, and Ns produce negligible (10-7) loss

tangent in the operational range 140-206 GHz, needed in fusion reactors for plasma heating and

stabilization via diamond windows.



29

Recommendations for WP implementations in future in EUROfusion:

• Incorporate mosaic SCD samples and wafers into EUREOfusion FM-ENR-programs to improve 

dielectric losses for heating and current drive and diagnostic windows as well.

• Check by spectroscopic measurements (RAMAN, CL, PL, ESR, etc. …) the optical properties.

• Check especially the content of nitrogen and gaphite like sp2 carbon, which will implemented in SCDs 

due to the mosaic SCD production process.

• All these investigations could provide for a DEMO reactor a quasi-new diamond quality with acceptable 

manufacturing prices!

In case of SC diamond, there are much lower

dielectric losses. In Japan companies, the so-called

mosaic SCD wafers (original from AIST in Osaka)

are quickly developing. The price of Lab Grown

Diamond windows (LGD) drops in time

significantly! This could be the future of FM in

Fusion research in the development phases in

EUROfusion programs.

Impact for fusion applications: for a certain nuclear environment in fusion reactor parts 

(heating and diagnostic systems, with lower radiation influence!)  →

Diamond is an excellent appropriate material for such applications.


