

Additive manufacturing as tool to manufacture and maintain plasma facing components

D. Dorow-Gerspach, M. Gago, V. Ganesh, J. Tweer, M. Wirtz

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the

Introduction

Vitglied der Helmholtz-Gemeinschaft

 \bullet

 \bullet

exchange the whole component

 \Rightarrow thickness reduction

Erosion: sputtering

Introduction

- - \Rightarrow **end of lifetime**
- \Rightarrow cracking + crumbling
-

Joint: difference in thermal expansion

Principle setup of a **P**lasma **F**acing **C**omponent

Limiting factors for lifetime: joint and surface

 \Rightarrow cyclic stress (fatigue + neutron embrittlement)

Surface: transient heat pulses

plasma breakdown

-
-
- ρ *failure*

Mitglied der Helmholtz-Gemeinschaft

- **3** Combining various AM techniques in order to realize new and tailored designs with the aim:
	- Increase robustness of joint and armor material \bullet
	- \bullet Less prone to neutron embrittlement
		- **→ Larger size of a component → lower cost**
- **3** Regenerate inevitable erosion losses
	- Most erosion locally at strike point \bullet
		- *local deposition w/o need to remove the whole component*
	- Thinner armor possible \bullet

Introduction

lower surface temperatures and costs

AM-techniques

- **3** W has very poor, thus costly machinability
	- \bullet Limits possible designs and shape variation
- Additive Manufacturing: layer-by-layer process
	- AM-W would allow realization of new ideas \bullet
	- \bullet Nearly no material is wasted as it is near net shape
	- Unnecessary material can be omitted, reducing weight/cost $\boldsymbol{\mathcal{L}}$
- **3** AM-techniques involved:
	- SEBM (**S**elective **E**lectron **B**eam Melting)
	- **LPBF** (**L**aser **P**owder **B**ed **F**usion)

AM-techniques

- **W** has very poor, thus costly machinability
	- \bullet Limits possible designs and shape variation
- Additive Manufacturing: layer-by-layer process
	- AM-W would allow realization of new ideas \bullet
	- Nearly no material is wasted as it is near net shape \bullet
	- Unnecessary material can be omitted, reducing weight \bullet

3 AM-techniques involved:

- SEBM (**S**elective **E**lectron **B**eam Melting)
- LPBF (**L**aser **P**owder **B**ed **F**usion)
- **LMD-W** (**W**ire based **L**aser **M**etal **D**eposition) \bullet
- LMD-P (**P**owder based **L**aser **M**etal **D**eposition)

Location of deposition

AM-techniques

- **3** W has very poor, thus costly machinability
	- Limits possible designs and shape variation \bullet
- Additive Manufacturing: layer-by-layer process
	- \bullet AM-W would allow realization of new ideas
	- Nearly no material is wasted as it is near net shape \bullet
	- Unnecessary material can be omitted, reducing weight \bullet

3 AM-techniques involved:

- SEBM (**S**elective **E**lectron **B**eam Melting)
- LPBF (**L**aser **P**owder **B**ed **F**usion)
- LMD-W (**W**ire based **L**aser **M**etal **D**eposition)
- LMD-P (**P**owder based **L**aser **M**etal **D**eposition)
- **APS** (**A**tmospheric **P**lasma **S**praying)

…

 \bullet

Publications during the duration

V. Ganesh – ID: 33546 \bullet

> Processing and properties of sintered W/steel-composites for the first wall of future fusion reactor *https://doi.org/10.3390/jne4010014*

V. Ganesh – ID: 33870 \bullet

> High heat flux testing of graded W-steel joining concepts for the first wall

https://doi.org/10.3390/en16093664

 \bullet V. Ganesh – ID: 33870

> Determination of mechanical properties of tungsten/steel composites using image based microstructure modelling *https://doi.org/10.3390/en16093664*

V. Ganesh – ID: 30420 \bullet

> Manufacturing of W/steel composites using electro-discharge sintering process *https://doi.org/10.1016/j.nme.2021.101089*

V. Ganesh – ID: 29595 \mathbf{I}

> Manufacturing of W-steel joint using plasma sprayed graded W/steel-interlayer with current assisted diffusion bonding *https://doi.org/10.1016/j.fusengdes.2021.112896*

- D. Dorow-Gerspach ID: 33811 \bullet Benchmarking by high heat flux testing of W-steel joining technologies *https://doi.org/10.1016/j.nme.2023.101508*
- J. Tweer– ID: 36194 \bullet

First experiments to regenerate the surface of plasma facing components by wire based laser metal deposition *https://doi.org/10.1016/j.nme.2023.101508*

- \bullet D. Dorow-Gerspach – ID: 29029 Additive manufacturing of high density pure tungsten by electron beam melting *https://doi.org/10.1016/j.nme.2021.101046*
- D. Dorow-Gerspach ID: 31785 \bullet Progress in the realization of advanced armour designs for plasma-facing components *https://doi.org/10.3390/jne3040020*
- J. Tweer– ID: 38122 \bullet

Repair of heat load damaged plasma facing material using the wire-based laser metal deposition process *manuscript: JNME-D-24-00189R2 accepted*

Project structure – Outline

O.1. AM of tungsten

O.1.1. Exploring new and development of further AM techniques for tungsten

O.1.2. H-retention and plasma influence on AM-W

O.2. Advanced joints between PFM and heat sink

O.2.1. Geometrical gradation

O.2.2. Compositional gradation

O.2.3. Flexible joint by using W-wire

O.2.4. Small scale benchmark test

O.3. W-wire as advanced armor to resist thermal shocks O.3.1. Sound joining of only the bottom of W-wire O.3.2. Impact on thermal performance of W-wire armor O.3.3. Influence of plasma on W-wire armor

O.4. Surface regeneration to compensate erosion loss

O.4.1. Regeneration of damaged surface

O.4.2. LMD-W process optimization to build up W meeting R_a-requirements

O.4.3. Investigation of post-deposition treatments like HFMI

O.5. Exploring advanced heat sink geometries

O.5.1. Assessment by FEM simulation of several different monoblock-type designs

O.5.2. Building several monoblocks based on O.5.1 by AM.

O.5.3. Production of a monoblock-chain and performance of HHF tests

O.6. Demonstrating feasibility and scalability of used technologies

O.6.1. Construction of cooling structures for test mock ups O.6.2. Joining of tungsten to the cooling structures by using the most promising technologies (O.2.4.)

O.6.3. Build-up of W on part of the mock ups (regeneration)

O.6.4. Comparative thermal cycling test

O.1. AM-W

2 Laser powder bed fusion **Selective electron beam melting Selective electron beam melting**

O.2. Joints – Compositional FGM

Compositional **ILICH** LMD-P

- **Classic approach to mitigate stress occurring** by thermal expansion mismatch
	- APS, EDS, SPS successfully producing single layer & full stack 12 x 12 mm² samples
	- Benchmark tests revealed no improved life time \bullet

Mitglied der Helmholtz-Gemeinschaft

Geometrical

O.2. Joints – Geometrical Gradation

- **3** Assuming CTE determined by volumetric contribution
	- \bullet Cu: 16.5 \times 10⁻⁶ 1/K
	- \bullet W: 4.5 \times 10⁻⁶ 1/K

Mitglied der Helmholtz-Gemeinschaft

- *D* Pyramid and LAR will be used
- Advantages against FGM
	- **Only one material transition / heat transfer barrier** not dozens at every particle/splat
	- Weakest point of the joints is always at bulk W, here this is not also at the hottest/most stressed point
	- \bullet Macroscopic stress is not aligned with joint, thus less risk of spontaneous failure i.e. crack deflection
	- Surface area is more than trippled ⁰

O.2. Joints – Geometrical Gradation

Geometrical

3D-print

structur

www

O.2. Joints – Flexible joints with steel

- \bullet Use of W_w \varnothing = 200 µm
	- **Directly or as joint**
- Laser metal deposition
	- Easily accessible technique
	- At atmosphere using Ar flooding \bullet to prevent oxidation
	- **Good degree of infiltration**
- **3** Cyclic high heat flux test
	- 3 samples with 4; 6; 9 mm W_w
	- 5 MW/m², 2000 cycles, 30s on/off \Rightarrow 600 – 900°C T_{surf}
	- **→ No loss / break out of W_w**

Mitglied der Helmholtz-Gemeinschaf

Daniel Dorow-Gerspach ENR-MAT.01.FZJ – 2021-2024 16

$\overline{\bullet}$ V1. Small Square (inner edge = 35 mm) $\overline{12}$ x 12 mm W-wire, \sim 45% "waste" $\prime\prime$ V2. Cylindrical (inner radius = 100 mm)

- \bullet 16 \times 16 mm W-wire area, \sim 10% waste
- \bullet No improve of stacking quality / robostness

O.3. W-wire as armor: Spool upscaling

- More effort to form plan parallel slices \bullet
- **Cylindrical design dismissed**
- $\prime\prime$ V3. Rectangular (inner edge = 150 mm)
	- $\overline{2}$ 25 x 25 mm W-wire, \sim 40% "waste"
	- Less bending stress at the center \bullet
	- Easier slicing of any desired thickness
	- \bullet "Wall" of 125 µm W-foil for protecting sides
	- Difficult to find a capable winding company \bullet

O.4. Surface regeneration - Deposition

LMD-W at IPT Aachen

- Ar flow, 4 kW IR laser, deposit W on W substrate
- Parametric studies for improving single beads (W-substrate only RT)
- Full layers (~ 0.7 mm thick) with densities up to 97.5 % were achieved
- Layers up to ITER monoblock size, multi layer and remelting \bullet

O.4. Surface regeneration – Remelting

3 Single layer

- Large cracks due to lack of substrate heating!
- **3** Remelting with 90° to reduce waviness
- Not the complete layer is remelted \bullet
- Strong defect anisotropy \bullet

Single as deposited layer

O.4. Surface regeneration - Remelting

Crosssection single melt bead Temperature distribution according to simulation

real melt pool depth (the large grains) \sim 370 µm Calculated melt pool depth \sim 370 µm

O.4. Surface regeneration – Multilayers

- **9** Perfect interlayer bond: no visible oxide films etc, grain structure continues through layers
	- Waviness doesn't increase with each layer but is determined by last one \bullet

O.4. Regeneration – Repair of damaged W

- \bullet Predamage on 12 \times 12 mm² W-blocks
- \sim Transients: 10⁵ pulses of 0.5 ms at 700°C with $F_{\sf HF}$ = 12 MW m⁻²s^{0,5}
- Successful deposition on damaged surface
	- No remelting / cleaning step necessary \bullet
	- Prior remelting increases number of key holes/defects \bullet

J. Tweer– ID: 38122 - *manuscript: JNME-D-24-00189R2 accepted*

Sample	Procedure
	Single layer (standard deposition parameters)
2	Single layer (half the velocity to double energy density)
З	Remelting
4	Remelting + single layer (standard parameters)
5	Remelting + single layer (half the velocity
	Reference

Daniel Dorow-Gerspach ENR-MAT.01.FZJ – 2021-2024 22

Fig. 4. Temperature field in the divertor target under stationary HHF load of 20 MW/m².

Table 3 Calculated temperature range on the armor surface during steady state HHF loading.

M. Li and J.-H. You; Nuclear Materials and Energy Nuclear Materials and Energy, vol. 14, pp. 1-7, 2018, doi: 10.1016/j.nme.2017.12.001

- **Test conditions to mimic monoblock chain**
	- Aiming for the same surface temperatures as for 10, 15, 20 MW/m² \bullet

O.6. Testing conditions for a LMD-w PFC

- 70°C cooling water temperature, 7 m/s, temp. dependent HTC \bullet
- 8 and 7 mm thick W-tiles and 2.5 mm Cu similar to center of MB \bullet
- **"Simulate" the center of a MB with flat tile design**
- Only slightly lower cooling capability thus: 9, 14 and 18 MW/m² \bullet

- **3** Monoblock like testing samples
	- MB size: 28 mm \times 12 mm, 7-8 mm thickness \bullet
	- Double blocks to realize the intended 0.5 mm gap \bullet for checking whether LMD-w bridges it or not
- **3** Four different configurations were prepared
	- One and two layers with 0.6 mm height each \bullet
	- With and w/o applied laser remelting to reduce roughness and waviness
	- **Precision of deposition technique accurate** enough to cover full MB and without bridging the gap in between
	- Brazed at 850°C on Cu cooling structure \bullet

O.6. Prototype mock-up: HHF test

- \bullet Test at "10 MW/m²" and "15 MW/m²" on \Box and \Box layers
	- Transient loadings on LMD-w material at < 200°C and 700°C both up to 10⁵ HFF12 \bullet
	- Surface temperatures during stationary HHF like simulated \bullet
	- No changes during cycling at "10 MW/m²" \bullet

Mitglied der Helmholtz-Gemeinschaft

O.6. Prototype mock-up: HHF test

- Analysis of the tests is ongoing…
	- Classic macro cracks in the center of the MB parallel to the \mathbf{v} cooling pipe appeared during the 15 MW/m² phase latest
	- All samples including the reference cracked but deposited once have already small ones in the beginning
	- For this first experiment IGP-W was not used as substrate \bullet but older single forged W from Plansee which might be the reason for the reference crack
		- **No delamination of full layers or breaking loose of parts**

Mitglied der Helmholtz-Gemeinschaft

Recommendations for further development

SEBM for full/dense W structures

- \bullet Iterations by designer/plasma physicist which shapes would be really helpful with which needed accuracy and experimentalist try to realize them including testing
- **Geometrical gradation as joining approach**
- W-wires as µ-brush (with Cu, steel or W joint)
	- Armour in strike line or other areas with strong transient loads \bullet
	- Possible candidate as limiter, as molten W gets sucked in/stays
- Starff Repair and Regeneration
	- LMD-w as in-vessel tool for local compensation of erosion losses
	- \bullet No layer/part broke of despite surface condition
	- Surface temperature eventually up to 1000°C during deposition \bullet necessary to avoid new cracks (similar to SEBM / LPBF of W)

