Turbulence statistical properties in FELTOR TCV761XX simulation Are the filaments truly field aligned?

S. Brynjulfsen

Faculty of Physics and Technology UiT Arctic University of Norway

May 2024

1/41

1 / 41

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0)

[Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

3 / 41

Probe setup

- \triangleright 32 toroidal planes, axisymmetric
- \blacktriangleright Field aligned grid of probes $32 \times 29 \times 21 = 19488$
- ▶ \approx 8 ms currently, converged for \approx 3ms (x 32)
- Sampling rate $f = 10$ MHz
- ▶ Simulation of TCV shots $76186(B_\varphi>0)$ and 76142 $(B_\varphi < 0)$
- \blacktriangleright Normalization $n'_e = n_e/n_0 \sim 10^{-1}$ after convergence

Probe grid

Stochastic model FPP:

$$
\Phi_K(t) = \sum_{k=1}^{K(T)} A_k \phi\Big(\frac{t-t_k}{\tau_k}\Big), \tag{1}
$$

 $\gamma = \frac{\tau_d}{\tau_u}$ $\frac{\tau_d}{\tau_w}$, $\tau_d = \langle \tau_k \rangle$, $\tau_w = \mathcal{T} / \langle K \rangle$.

6/41 Normalization $\tilde{n_e} = (n_e - \langle n_e \rangle)/n_{\text{erms}}.$

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

OMP time series

Signal at various radial positions at the outboard midplane. Favourable and unfavourable curvature drift direction.

Figure: $B_{\varphi} > 0$.

OMP density statistics

Figure: Density statistics at the outboard midplane for different field directions.

メロト メタト メミト メミト

 299

E.

OMP Probability density function

Figure: PDF for $B_{\varphi} > 0$.

−5 0 5 10 *n*˜*e* 10−⁶ 10−⁵ 10−⁴ 10−³ *P*(˜*ne*) 10−² 10−¹ $x - x_{\text{sep}} = -20$ $-x_{sen} =$ *x*−*x*sep = 8 $x - x_{\text{sep}} = 14$ $x - x_{\text{sep}} = 20$

Figure: PDF for $B_{\varphi} < 0$.

◆ロト→伊 4 周下 $\rightarrow \equiv$ 一番 299 10/41 10 / 41

OMP Power spectral density and conditionally averaged pulse shapes

11/41 Fig[ure](#page-9-0): [P](#page-11-0)[SD](#page-10-0) [an](#page-7-0)[d](#page-8-0) [C](#page-12-0)[A](#page-5-0) [f](#page-11-0)[or](#page-12-0) $B_{\varphi} < 0$ $B_{\varphi} < 0$. 11 / 41

OMP ExB and parallel electron velocity

Figure: Velocity mean and rms for $B_{\varphi} > 0$.

Figure: Velocity mean and rms for $B_{\omega} < 0$. **◆ロト→伊** $\leftarrow \equiv$ $\bar{\Xi}$ 2990 12/41 12 / 41

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0) [Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

13/41

13 / 41

K ロ K K @ K K 통 K X 통 K Y G Q Q Q

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

Timeseries

At position $x - x_{\text{sep}} = 8$ mm.

Figure: Timeseries for different poloidal positions for plane $\varphi = 0$.

 $999 - 14/41$

800 90 R/ρ_s

 \rightarrow

 \rightarrow \equiv \rightarrow

重

不信

(ロ) (d)

Separatrix density statistics

At position $x - x_{\text{sep}} = 0$ mm.

Figure: Poloidal density statistics at the separatrix for different field directions.

 2990

4 ロ) 4 何) 4 ミ) 4 ミ) 4 ミ

Probability density function

At position $x - x_{\text{sep}} = 8$ mm.

Power spectral density and conditionally averaged pulse shapes

At position $x - x_{\text{sep}} = 8$ mm.

Figure: PSD and CA for $B_{\varphi} > 0.$

Figure: PSD and CA for \cdot B_{φ} B_{φ} \ll [0.](#page-13-0) Extra 重→ 重 のぬぐ 17/41 17 / 41

Velocity field

Straightened out field lines.

18 / 41

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0)

[Scale length along field line](#page-23-0)

19/41

19 / 41

K ロ K K @ K K 통 K X 통 K Y G Q Q Q

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

Field line alignment

メロトメ 御 トメ 君 トメ 君 トッ 君 2990 20/41

20 / 41

Time delay estimation from OMP

Condition on OMP: $\tilde{n}_{e}(d\varphi = 0) > 2.5$

21 / 41

Time delay estimation from OMP

Time delay estimation using cross conditionally averaging (CCA) with condition $\tilde{n}_e > 2.5$ at $d\phi = 0$. Compared to Cross correlation (CCR) method.

Figure: CCA.

Figure: CCR.

Conditionally averaged amplitudes

Figure: Amplitude along the field line for various radial positions (OMP values). $\tilde{A_{\parallel}} = (A - \langle n_{\rm e} \rangle_{t,\parallel})/n_{\rm ems(t,\parallel)}.$

$$
x - x_{\text{sep}} = -20
$$

\n
$$
x - x_{\text{sep}} = 0
$$

\n
$$
x - x_{\text{sep}} = 8
$$

\n
$$
x - x_{\text{sep}} = 14
$$

\n
$$
x - x_{\text{sep}} = 20
$$

 $\bar{n_{e}} = \langle n_{e} | \tilde{n_{e}} (d\varphi = 0) \rangle$ $2.5\rangle$ Choices:

$$
\blacktriangleright A = \max(\bar{n_e}(t))
$$

$$
\blacktriangleright A = \bar{n_e}(t = 0)
$$
\n(dashed)

◆ロト→ 伊ト→ ミト→ ミト 一番 つくへ 23/41 23 / 41

Separatrix transition

Figure: Filament amplitude change around the separatrix.

Filament amplitude scale length along field line Gaussian fit to exp $\left(-\frac{(\mathsf{x} - \mu)}{2\sigma^2_{\mathsf{A}}} \right)$ $\frac{\left(\chi-\mu\right)}{2\sigma_A^2}$ A

Figure: Scale length of the amplitude along φ from a Gaussian fit for various radial positions.

Filament amplitude scale length along field line Gaussian fit to exp $\left(-\frac{(\mathsf{x} - \mu)}{2\sigma^2_{\mathsf{A}}} \right)$ $2\sigma_A^2$ \setminus

Figure: Scale length of the amplitude along φ for different field directions.

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

K ロ K K @ K K 통 K X 통 K Y G Q Q Q 27/41 27 / 41

Conclusion

Validating the simulation

- ▶ In agreement with FPP model
- ▶ Some behaviours are different than expected, possible simulation limits

Investigating the differences and new opportunities given by 3D simulations compared to 2D

- ▶ Large scale background circulations
- ▶ Filament alignment to field line varies
- \blacktriangleright Filament scale length halves when exiting the separatrix

4 0 X 4 8 X 4 3 X 4 3 X 4 8 Y 4 0 4 0 4 1

Table of Contents

[Setup](#page-2-0)

[OMP radial statistics](#page-6-0) [OMP density statistics](#page-8-0)

[Poloidal statistics](#page-12-0)

[Density statistics](#page-14-0)

[Field alignment](#page-18-0) [Filament alignment](#page-19-0) [Scale length along field line](#page-23-0)

[Conclusion](#page-26-0)

[Reserve](#page-28-0)

Radial density profile

Figure: Density scale lengths from a piece-wise, near and far SOL, exponential fit.

Poloidal change of density profile

Figure: Radial profiles for different poloidal positions, from X-point to top of torus. Near/far separation relatively constant.

Poloidal change of density scale length

32/41 Figure: Density scale lengths from a piece-[wis](#page-30-0)e[, n](#page-32-0)[e](#page-30-0)[ar](#page-31-0) [a](#page-32-0)[n](#page-27-0)[d](#page-28-0) [fa](#page-40-0)[r](#page-27-0)[SOL](#page-40-0), exponential fit for varying poloidal posit[ion](#page-0-0)s for each field direction[.](#page-40-0) $\frac{32}{32/41}$

8mm density statistics

At position $x - x_{\text{sep}} = 8$ mm.

Figure:P[o](#page-28-0)lo[i](#page-27-0)dal density statistics at $x - x_{\rm sep} = 8/\bar{m}$ $x - x_{\rm sep} = 8/\bar{m}$ m [f](#page-27-0)o[r d](#page-40-0)i[ff](#page-28-0)[ere](#page-40-0)[nt](#page-0-0)≡field۹۹۰ $\frac{33}{41}$ directions. $33/41$

Timeseries

At position $x - x_{\text{sep}} = 0$ mm.

Figure: Timeseries for different poloidal positions for plane $\varphi = 0$.

K ロ ト K 伊 ト K

B

G.

 299

34/41 34 / 41

Flux density field

Figure: $B_{\varphi} > 0$.

Figure: $B_{\varphi} < 0$.

4 ロ → 4 @ ▶ 4 로 → 4 로 → - 로 → 9 9 0 35/41 35 / 41

Spatial delay estimation from OMP

^{36 / 41}

Time delay estimation from OMP (reverse) Condition on OMP: $\tilde{n}_e(d\varphi = 0) > 2.5$

Time delay estimation from OMP (reverse)

Time delay estimation using cross conditionally averaging (CCA) with condition $\tilde{n}_e > 2.5$ at $d\phi = 0$. Compared to Cross correlation (CCR) method.

Figure: CCA.

Figure: CCR.

Conditional averaging

Choose an amplitude threshold, and when the signal Φ crosses the threshold (usually 2.5Φ_{rms}) record

- ▶ Position of peaks
- ▶ Amplitude of peaks
- \blacktriangleright Shape of the signal around peaks

and compute an average shape, ect.

Cross conditional average: take values form one signal using another as reference.

∢重き

39/41

Stochastic model

FPP:

$$
\Phi_K(t) = \sum_{k=1}^{K(T)} A_k \phi\left(\frac{t - t_k}{\tau_k}\right),\tag{2}
$$

 $K(T)$: no. of pulses in T, A_k : pulse amplitude, t_k : pulse arrival time, τ_k : pulse duration

- \blacktriangleright Shot noise behaviour
- ▶ Describes events, excluding origin
- \triangleright Convolution of a pulse function with a forcing

Intermittency parameter:

$$
\gamma = \frac{\tau_d}{\tau_w},\tag{3}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @ .

 $\tau_d = \langle \tau_k \rangle$ is a constant duration time, and average waiting time between pulses $\tau_w = T/\langle K \rangle$.

> 40/41 40 / 41

Stochastic model

Assuming:

- \blacktriangleright uncorrelated arrivals
- ▶ neglecting end effects
- ▶ Amplitude $P_A(A) \sim$ exp

► Exp. pulse shape $\phi(\theta)$, $\theta = (t - t_k)/\tau_d$, with asymmetry λ The PDF and PSD are:

$$
P_{\tilde{\Phi}}(\tilde{\Phi}; \gamma) = \frac{\gamma^{1/2}}{\Gamma(\gamma)} \Big(\gamma^{1/2} \tilde{\Phi} + \gamma\Big)^{\gamma - 1} \exp\Big(-\gamma^{1/2} \tilde{\Phi} - \gamma\Big), \qquad (4)
$$

$$
\Omega_{\tilde{\Phi}}(\omega; \lambda, \tau_d) = \frac{2\tau_d}{[1 + (1 - \lambda)^2 \tau_d^2 \omega^2][1 + \lambda^2 \tau_d^2 \omega^2]]}
$$
(5)

Normalization $\tilde{n}_{e} = (n_{e} - \langle n_{e} \rangle)/n_{\text{erms}}$