Turbulence statistical properties in FELTOR TCV761XX simulation Are the filaments truly field aligned?

S. Brynjulfsen

Faculty of Physics and Technology UiT Arctic University of Norway

May 2024

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics

Density statistics

Field alignment

Filament alignment Scale length along field line

Conclusion

Reserve

2/41

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

Probe setup

- 32 toroidal planes, axisymmetric
- Field aligned grid of probes 32 × 29 × 21 = 19488
- ► \approx 8 ms currently, converged for \approx 3ms (x 32)
- Sampling rate f = 10MHz
- Simulation of TCV shots $76186(B_{\varphi} > 0)$ and $76142(B_{\varphi} < 0)$
- ▶ Normalization $n'_e = n_e/n_0 \sim 10^{-1}$ after convergence

Probe grid

Stochastic model FPP:

$$\Phi_{\kappa}(t) = \sum_{k=1}^{\kappa(\tau)} A_k \phi\left(\frac{t-t_k}{\tau_k}\right),\tag{1}$$

 $\gamma = \frac{\tau_d}{\tau_w}, \ \tau_d = \langle \tau_k \rangle, \ \tau_w = T/\langle K \rangle.$

Normalization $ilde{n_e} = (n_e - \langle n_e \rangle)/n_{
m erms}$.

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics Density statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

OMP time series

Signal at various radial positions at the outboard midplane. Favourable and unfavourable curvature drift direction.

Figure: $B_{\varphi} > 0$.

<ロ><回><回><日><日><日><日><日><日><日><日><日><日><日><日</td>8/41

OMP density statistics

Figure: Density statistics at the outboard midplane for different field directions.

OMP Probability density function

Figure: PDF for $B_{\varphi} > 0$.

Figure: PDF for $B_{\varphi} < 0$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ■ のへで 10/41

10/41

OMP Power spectral density and conditionally averaged pulse shapes

Figure: PSD and CA for $B_{\varphi} > 0$.

Figure: PSD and CA for $B_{\varphi} < 0$. $(\square) \land (\square) : (\square) (\square) : ($

OMP ExB and parallel electron velocity

Figure: Velocity mean and rms for $B_{\varphi} > 0$.

Figure: Velocity mean and rms for $B_{\varphi} < 0.$

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics Density statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

Timeseries

At position $x - x_{sep} = 8$ mm.

 R/ρ_s

æ

< 注 > < 注 >

のへで 14/41

14 / 41

Figure: Timeseries for different poloidal positions for plane $\varphi = 0$.

Separatrix density statistics

At position $x - x_{sep} = 0$ mm.

Figure: Poloidal density statistics at the separatrix for different field directions.

イロト イヨト イヨト

ъ

Probability density function

At position $x - x_{sep} = 8$ mm.

16/41

Power spectral density and conditionally averaged pulse shapes

At position $x - x_{sep} = 8$ mm.

Figure: PSD and CA for $B_{\varphi} > 0$.

Figure: PSD and CA for $B_{\varphi} \ll 0.23 \times 10^{-17/41}$

Velocity field

Straightened out field lines.

イロト イクト イヨト イヨト 三日

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics Density statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

Field line alignment

Time delay estimation from OMP

Condition on OMP: $\tilde{n_e}(d\varphi = 0) > 2.5$

21 / 41

Time delay estimation from OMP

Time delay estimation using cross conditionally averaging (CCA) with condition $\tilde{n_e} > 2.5$ at $d\phi = 0$. Compared to Cross correlation (CCR) method.

Figure: CCA.

Figure: CCR.

Conditionally averaged amplitudes

Figure: Amplitude along the field line for various radial positions (OMP values). $\tilde{A}_{\parallel} = (A - \langle n_e \rangle_{t,\parallel})/n_{erms(t,\parallel)}.$

$$\begin{array}{c} \hline x - x_{sep} = -20 \\ \hline x - x_{sep} = 0 \\ \hline x - x_{sep} = 8 \\ \hline x - x_{sep} = 14 \\ \hline x - x_{sep} = 20 \end{array}$$

$$ar{n_e} = \langle n_e | \, ilde{n_e}(darphi = 0) > 2.5
angle$$
 Choices:

$$\blacktriangleright A = \max(\bar{n_e}(t))$$

•
$$A = \bar{n_e}(t=0)$$

(dashed)

Separatrix transition

Figure: Filament amplitude change around the separatrix.

Filament amplitude scale length along field line Gaussian fit to $\exp\left(-\frac{(x-\mu)}{2\sigma_A^2}\right)$

Figure: Scale length of the amplitude along φ from a Gaussian fit for various radial positions.

Filament amplitude scale length along field line Gaussian fit to $\exp\left(-\frac{(x-\mu)}{2\sigma_A^2}\right)$

Figure: Scale length of the amplitude along φ for different field directions.

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics Density statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

Conclusion

Validating the simulation

- In agreement with FPP model
- Some behaviours are different than expected, possible simulation limits

Investigating the differences and new opportunities given by 3D simulations compared to 2D $\,$

- Large scale background circulations
- Filament alignment to field line varies
- Filament scale length halves when exiting the separatrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○○

Table of Contents

Setup

OMP radial statistics OMP density statistics

Poloidal statistics Density statistics

Field alignment Filament alignment Scale length along field line

Conclusion

Reserve

Radial density profile

Figure: Density scale lengths from a piece-wise, near and far SOL, exponential fit.

Poloidal change of density profile

Figure: Radial profiles for different poloidal positions, from X-point to top of torus. Near/far separation relatively constant.

Poloidal change of density scale length

Figure: Density scale lengths from a piece-wise, near and far SOL, exponential fit for varying poloidal positions for each field direction.

32 / 41

8mm density statistics

At position $x - x_{sep} = 8$ mm.

Figure: Poloidal density statistics at $x - x_{sep} = 8/mm$ for different field 33/4

Timeseries

At position $x - x_{sep} = 0$ mm.

Figure: Timeseries for different poloidal positions for plane $\varphi = 0$.

・ロト ・ 合 ト ・ 主 ト モ シ マ へ 34/41
34 / 41
34 / 41

Flux density field

Figure: $B_{\varphi} > 0$.

Figure: $B_{\varphi} < 0$.

▲□▶ < 큔▶ < 트▶ < 트▶ = ♡٩. 35/41
 35/41

Spatial delay estimation from OMP

^{36 / 41}

Time delay estimation from OMP (reverse) Condition on OMP: $\tilde{n}_e(d\varphi = 0) > 2.5$

Time delay estimation from OMP (reverse)

Time delay estimation using cross conditionally averaging (CCA) with condition $\tilde{n_e} > 2.5$ at $d\phi = 0$. Compared to Cross correlation (CCR) method.

Figure: CCA.

Figure: CCR.

Conditional averaging

Choose an amplitude threshold, and when the signal Φ crosses the threshold (usually $2.5\Phi_{rms}$) record

- Position of peaks
- Amplitude of peaks
- Shape of the signal around peaks

and compute an average shape, ect.

Cross conditional average: take values form one signal using another as reference.

→ < Ξ →</p>

Stochastic model

FPP:

$$\Phi_{\mathcal{K}}(t) = \sum_{k=1}^{\mathcal{K}(T)} A_k \phi\left(\frac{t-t_k}{\tau_k}\right),\tag{2}$$

K(T): no. of pulses in T, A_k : pulse amplitude, t_k : pulse arrival time, τ_k : pulse duration

- Shot noise behaviour
- Describes events, excluding origin
- Convolution of a pulse function with a forcing Intermittency parameter:

 $\gamma = \frac{\tau_d}{\tau_w},\tag{3}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

 $\tau_d = \langle \tau_k \rangle$ is a constant duration time, and average waiting time between pulses $\tau_w = T/\langle K \rangle$.

40 / 41

Stochastic model

Assuming:

- uncorrelated arrivals
- neglecting end effects
- ► Amplitude P_A(A) ~ exp

Exp. pulse shape $\phi(\theta)$, $\theta = (t - t_k)/\tau_d$, with asymmetry λ The PDF and PSD are:

$$P_{\tilde{\Phi}}(\tilde{\Phi};\gamma) = \frac{\gamma^{1/2}}{\Gamma(\gamma)} \left(\gamma^{1/2}\tilde{\Phi} + \gamma\right)^{\gamma-1} \exp\left(-\gamma^{1/2}\tilde{\Phi} - \gamma\right), \qquad (4)$$

$$\Omega_{\tilde{\Phi}}(\omega; \lambda, \tau_d) = \frac{2\tau_d}{[1 + (1 - \lambda)^2 \tau_d^2 \omega^2][1 + \lambda^2 \tau_d^2 \omega^2]]}$$
(5)

Normalization $ilde{n_e} = (n_e - \langle n_e \rangle)/n_{e \mathrm{rms}}$