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Outline

= Validation of the SOLPS-ITER simulation against the
TCV-X21 reference case [1]

= Comparison of filament properties in experiment and
GBS simulations in TCV-X21 case [2]

= Summary and outlook

* [1]Y. Wang et al 2024 Nucl. Fusion 64 056040
* [2]Y. Wang et al Nucl. Fusion in prep.
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=P7L Motivation of SOLPS-ITER TCV-X21 validation

= In quantitative multi-code validation

against the TCV-X21 [1] B TCV-X21 B lonization assumed
9 _ diagnostics in [1]
« Good match outer midplane and (1]
upstream |

0.8

* Less good match in divertor region

 Could be due to assumption of
lon source distribution (inside 04
the core), though sheath limited

e SOLPS-ITER
« 2-D Transport code
 Monte-Carlo neutral model 02

« Suitable tool to investigate neutral
effects

* In this work, no drifts and os ||
homogeneous D, and y,

0.6

0.2

Z[m]

[1] D. S. Oliveira, T. Body, et al, Nucl. Fusion 2022
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=PFL  Extension of the TCV-X21 dataset

= |n this work, we enlarged the TCV-X21 dataset

 Include divertor spectroscopy and neutral
pressure measurements

* Link: https://zenodo.org/records/10841179

* Quantative Validation of 32 observables -»
overall agreement metric y
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B TCV-X21 extended
diagnostics
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https://zenodo.org/records/10841179

=PFL  Scan parameters for better agreement

« Manually scan the input parameters (gas puff, particle and heat transport

coefficients) to minimize the y metric

* Indicates higher perpendicular transport coefficients than usually used for
TCV lead to better overall agreement

« Also explore the gradient method for minimization
» Less effective here than simple scan

v
better overall
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=PrL

* Obtain the neutral ionization distribution from
SOLPS » Deviation from the assumption made in
previous simulations

lonization source [m'3s'1]
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Some effects of the neutrals

Divertor flows: GBS systematically larger than the SOLPS-ITER.
This suggests some flow reduction in the divertor by the neutrals.

The parallel Mach numbers from SOLPS-ITER still substantially
larger than those measured with RDPA (reciprocating divertor probe
array)
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=PFL  GPI (Gas Puff Imaging) diagnostics at TCV |

: : &
= GPIl diagnostics ’
- Neutral gas (D2, He) puff 0e SMHz
* Interaction with boundary .
plasma - emission o
= They can provide 7 Al 02
[ \ =
 2-D, toroidally localized cross- \ / ~ O
section of plasma structure N
- At midplane and X-point [ e A00kHz
« High time (0.4~2Mhz) and \ -0.4 |4
spatial resolution (~mm, <lcm) N
: R 0.6
« Appearance frequency, size e
(poloidal and radial), velocity, L
06 08 1
R [m]

B Schematic TCV tokamak, GPI diagnostics snapshots at TCV.
Inner image taken from [1] N. Offeddu, C. Withrich, W. Han, et al., RSI 2022
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=PFL O-T Synthetic GPI model postprocesses GBS input

= The fluid continuity equation
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=prL Comparison with GBS simulations

Simulation

e i plane GPI
e X pt GPI view
= Xpt GPI view
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[1] Offeddu & Withrich et al 2022 RSI 93 123504
[2] D. Oliveira & T. Body et al 2022 NF 62 096001
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=PrL Sim-Exp comparison of filament size and velocity

= Key observations
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 The distribution of filament velocity:

well reproduced by the simulation,
especially in the Xpt and divertor leg
region.

* The simulations generally overestimate
the poloidal and radial size, by a factor
2-3.
* Including different toroidal planes to
Increase simulation statistics is ongoing.
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=PrL Sim-Exp comparison of filament size and velocity

H = Experiment
e X-point region mulation
0.08

= Key observations

* The distribution of filament velocity: B Reversed:g:j - O HHJH
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=P7L Filament poloidal velocity compared with mean E X B drift"

= Qutboard midplane

 Follow the mean ExB velocity trend
at p>1.05

« Large spread
= X-point region

* Also consistent with the mean ExB
velocity trend

= Divertor leg
* Not following the mean ExB velocity

« Possibly follow the direction of the
flux tube motion
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=PFL Summary and OQutlook  Thankyou!
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« SOLPS-ITER Validation of the TCV-X21 case

Based on the global agreement metric, we optimized free input parameters, showing better agreement for an
increased transport coefficient compared to what is usually used for TCV L-mode plasmas.

These simulations show a significant portion of neutral ionization to occur in the SOL.
This is a major difference compared with the assumption used in the first turbulence code validation in the TCV-X21
validation case, motivating the self-consistent inclusion of neutrals in future TCV-X21 turbulence studies.

GBS divertor flows systematically larger than the SOLPS-ITER flows. This suggests some flow reduction in the
divertor by the neutrals. The parallel Mach numbers from SOLPS-ITER still substantially larger than those measured

with RDPA.

= Comparison of filament properties in experiment and GBS
simulations in TCV-X21 case

Poloidal and radial filament velocities are in good agreement between simulations and experiments.

Compared to the experiments, the simulations overestimated filament sizes (by a factor 2-3 ) in radial and poloidal
dimension.

In the simulation, filaments are dominantly represented by a density fluctuation and show low temperature
fluctuations, which is consistent with previous assumptions in experimental analysis of cross-field turbulent transport
from GPI data.

Filament velocities are found not follow the mean ExB in the divertor region, though follow it in the ourboard
midplane.

On the path towards fully predictive simulations, a better sim-exp agreement of filament sizes will be needed. Several
paths are currently being pursued: self-consistent inclusion of neutrals, removal of Boussinesqg approximation, more
realistic resistivity (numerically challenging).
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