

Wall Geometry & Curvilinear Grids in GBS

Louis Stenger & Paolo Ricci Swiss Plasma Center École Polytechnique Fédérale de Lausanne

TSVV3 Annual Meeting

EPFL Outline

[GBS and Wall Geometry](#page-2-0)

[Dealing with Realistic Wall Geometry](#page-12-0)

[Synthetic Test Case](#page-19-0)

[Baffled TCV-like Case](#page-29-0)

EPFL Plasma Turbulence

GBS Evolves the Drift-Reduced Braginskii Equations

- **Quasi-neutrality**
- Ordering of turbulence $\tau \ll \Omega_{ci}^{-1}$, $\rho_s \ll L_{\perp}$
- **Large aspect ratio**
- Strong toroidal, axisymmetric magnetic field

$$
\frac{\partial n}{\partial t} = \left[\begin{array}{c} -\frac{\rho_*^{-1}}{B} \{\phi, n\} + \frac{2}{B} \left[C(p_e) - nC(\phi) \right] & -\nabla_{\parallel}(n v_{\parallel e}) \\ + D_n \nabla_{\perp}^2 n & +S_n \end{array} \right] \left[\begin{array}{c} -\nabla_{\parallel}(n v_{\parallel e}) & \\ +v_{iz} n_n - n_i v_{\text{rec}} \end{array} \right]
$$

EPFL Neutral Dynamics

GBS Evolves a Kinetic Neutral System

- **Mono-atomic species,**
- Short and long neutral mean free paths considered.
- **Physical processes: ionization, charge exchange, recombination,** recycling, reflection

At each timestep, need to compute and invert the "kernel matrix",

$$
\begin{bmatrix} n_n \\ \Gamma_{\text{out},n} \end{bmatrix} = \begin{bmatrix} v_{\text{cx}} K_{p \to p} & (1 - \alpha_{\text{refl}}) K_{b \to p} \\ v_{\text{cx}} K_{p \to b} & (1 - \alpha_{\text{refl}}) K_{b \to b} \end{bmatrix} \begin{bmatrix} n_n \\ \Gamma_{\text{out},n} \end{bmatrix} + \begin{bmatrix} n_{n[\text{recl}} + n_{n[\text{out,il}]} \\ \Gamma_{\text{out},n[\text{recl}} + \Gamma_{\text{out},n[\text{out,il}]} \end{bmatrix}
$$

 n_{n} : neutral density, Γ $_{\rm out}$: outflowing neutral flux, $\alpha_{\rm refl}$: reflection coefficient, p: plasma, b: boundary, cx: charge exchange, rec: recombination, i: ionization

EPFL Neutral Dynamics

The Kernel Matrix Elements are Path Integrals

Each element composed of direct and reflected paths, e.g. $K_{p\rightarrow p} = K_{p\rightarrow p}^{\text{dir}} + \alpha_{\text{refl}} K_{p\rightarrow p}^{\text{refl}}$ $p \rightarrow p$ For each path, compute a path integral, e.g.

$$
K^{\text{dir}}_{p\rightarrow p}(\mathbf{x},\mathbf{x}') = \int_0^{+\infty} \frac{1}{r_\perp} \Phi_{\perp i}(\mathbf{v}_\perp) \exp\left[-\frac{1}{v_\perp} \int_0^{r_\perp} v_{\text{eff}}(\mathbf{x}'') \, \text{d}r''_\perp\right] \text{d}v_\perp.
$$

EPFL The GBS Code

Plasma:

- GBS evolves
	- 6 fields explicitely in time *n*, v_{∥e}, v_{∥i}, T_e, T_i, ω
	- 2 potentials ϕ (electrostatic), ψ (electromagnetic)
- 4th order spatial finite differences
- Dual φ , Z-staggered Cartesian grid
- Runge-Kutta 4^{th} order in time

Neutrals:

- **Low-resolution Cartesian grid,**
- **Dense matrix inversion**

Matrix systems solved with PETSc (GMRES).

EPFL The GBS Code

Plasma:

- GBS evolves
	- 6 fields explicitely in time *n*, v_{∥e}, v_{∥i}, T_e, T_i, ω
	- 2 potentials ϕ (electrostatic), ψ (electromagnetic)
- 4th order spatial finite differences
- Dual φ , Z-staggered Cartesian grid
- Runge-Kutta 4^{th} order in time

Neutrals:

- **Low-resolution Cartesian grid,**
- **Dense matrix inversion**

Matrix systems solved with PETSc (GMRES).

- Baffled TCV discharges with increased neutral pressure (Reimerdes et al. [2021\)](#page-41-0),
- SPARC's super-X "tunnel" divertor (Kuang et al. [2020\)](#page-41-1),
- TCV future tightly baffled divertor (Sun et al. [2023\)](#page-41-2),

- Baffled TCV discharges with increased neutral pressure (Reimerdes et al. [2021\)](#page-41-0),
- SPARC's super-X "tunnel" divertor (Kuang et al. [2020\)](#page-41-1),
- TCV future tightly baffled divertor (Sun et al. [2023\)](#page-41-2),

- Baffled TCV discharges with increased neutral pressure (Reimerdes et al. [2021\)](#page-41-0),
- SPARC's super-X "tunnel" divertor (Kuang et al. [2020\)](#page-41-1),
- TCV future tightly baffled divertor (Sun et al. [2023\)](#page-41-2),

- Baffled TCV discharges with increased neutral pressure (Reimerdes et al. [2021\)](#page-41-0),
- SPARC's super-X "tunnel" divertor (Kuang et al. [2020\)](#page-41-1),
- TCV future tightly baffled divertor (Sun et al. [2023\)](#page-41-2),
- Simulation tools
	- SOLPS-ITER (Dekeyser et al. [2021\)](#page-40-0)
	- BOUT++ (Dudson et al. [2021\)](#page-40-1)
	- SOLEDGE3X-HDG (Bufferand et al. [2021\)](#page-40-2)
	- SOLEDGE, GRILLIX (penalization) (Body et al. [2020\)](#page-40-3)
	- FELTOR (FV-FCI) (Wiesenberger et al. [2017\)](#page-41-3)

- Baffled TCV discharges with increased neutral pressure (Reimerdes et al. [2021\)](#page-41-0),
- SPARC's super-X "tunnel" divertor (Kuang et al. [2020\)](#page-41-1),
- TCV future tightly baffled divertor (Sun et al. [2023\)](#page-41-2),
- Simulation tools
	- SOLPS-ITER (Dekeyser et al. [2021\)](#page-40-0)
	- BOUT++ (Dudson et al. [2021\)](#page-40-1)
	- SOLEDGE3X-HDG (Bufferand et al. [2021\)](#page-40-2)
	- SOLEDGE, GRILLIX (penalization) (Body et al. [2020\)](#page-40-3)
	- FELTOR (FV-FCI) (Wiesenberger et al. [2017\)](#page-41-3)

- Finite difference (FD) method on curvilinear grids, Finite element method. Galerkin method, Finite volume method or discontinuous Galerkin method, Penalization method or
	- "immersed boundary" (IB) method,

- Finite difference (FD) method on curvilinear grids, Finite element method. Galerkin method, Finite volume method or discontinuous Galerkin method, Penalization method or "immersed boundary" (IB)
	- method,

- Finite difference (FD) method on curvilinear grids,
- Finite element method.
	- Galerkin method,
	- Finite volume method or
	- discontinuous Galerkin method,
- Penalization method or "immersed boundary" (IB) method,

- \blacksquare Finite difference (FD) method on curvilinear grids, Finite element method. Galerkin method, Finite volume method or discontinuous Galerkin method, | Penalization | method or
	- "immersed boundary" (IB) method,

EPFL Formalism for Curvilinear Grids

Consider "boundary-fitted" grids

Coordinate transformation: Computational variables $\{\xi^i\}_i \to (R, \varphi, Z)$

$$
\frac{\partial n}{\partial R} = \frac{\partial \xi^i}{\partial R} \frac{\partial n}{\partial \xi^i}
$$

- GBS is axisymmetric, transform only a single poloidal plane $\xi^3 = \varphi$
- Retain finite difference convergence
- (Almost) No refactoring needed. User perspective: one new optional input to provide.

Physical grid:

EPFL How to Generate a Grid?

■ Analytically, e.g. toroidal coordinates $(R, Z) = ((R_0 + r) \cos(\theta), r \sin(\theta))$

EPFL How to Generate a Grid?

- Analytically, e.g. toroidal coordinates
	- $(R, Z) = ((R_0 + r) \cos(\theta), r \sin(\theta))$
- **Numerically**
	- \blacksquare Transfinite interpolation (TFI)
	- **Elliptic methods (EGG)**
	- Spline-based EGG (ongoing collaboration MNS, EPFL)

EPFL A "Swirl" Case to Test the Inner Domain

Analytical definition. Keep the boundary conditions free from side effects. Activate all metric elements. Direct comparison to main version.

EPFL Comparison of Rectilinear and Curvilinear Cases

EPFL Comparison of Rectilinear and Curvilinear Cases

۰

EPFL Intermezzo: Generating Field Aligned Grids

- Orthogonal coordinates useful to split B-aligned and cross-field transport.
- \mathbf{B} = $B_{\varphi} \mathbf{e}_{\varphi}$ + $\mathbf{\nabla} \varphi \times \mathbf{\nabla} \psi$
- **Flux surfaces:** ψ -isolines
- Orthogonal coordinate "χ"

EPFL Finding χ given ψ

The simplest system, $\pmb{\nabla} \pmb{\chi}$ = $\pmb{\nabla} \psi^{\mathsf{T}}$ is overdetermined,

$$
\mathbf{A}\mathbf{x} = \begin{bmatrix} D_x \\ D_y \end{bmatrix}_{2n \times n} [X]_n = \begin{bmatrix} D_y \\ -D_x \end{bmatrix}_{2n \times n} [\boldsymbol{\psi}]_n = \mathbf{b}
$$

but a LSQR solver (minimize **||Ax - b||)** converges

EPFL ... also works for "sparse" domains ...

EPFL ... but fails towards the core

Why did it work so far? We have been solving the Cauchy-Riemann equations. If a solution exists, also imply $\Delta \psi = \Delta \chi = 0$ and a corresponding conformal map is defined $f = \psi + iy$. But in our case, $\nabla \times \mathbf{B}_{\text{pol}} = \Delta \psi = J \neq 0.$

EPFL Let's assume ψ can be rescaled

Let $\psi_h = h(\psi)\psi$,

 $\nabla \psi_h = (h + h'\psi)\nabla \psi = \xi \nabla \psi,$

require ξ > 0. Require also Δ $\psi^{\vphantom{\dagger}}_h$ = 0 = ξΔ ψ + (∇ ψ · ∇)ξ. Solve

 $(\nabla \psi \cdot \nabla) \log \xi = -\Delta \psi$

EPFL Solve for χ using the rescaled ψ

We're solving the over-determined system again, this time with $\boldsymbol{\psi}_h$ in place of ψ , $\nabla \chi = \nabla \psi_h^T$.

EPFL Naive approach works outside closed field line regions

150

 0.2

Actually "fixes" X21 defects

300

250

200

150

100

50

EPFL Baffled TCV Setup

÷

EPFL Baffled TCV Setup

EPFL Baffled TCV Setup

EPFL Baffled TCV Results

- **Needs additional runtime** before convergence
- \blacksquare Qualitative differences observed
	- Baffles enhance SOL parallel flows: very close to plasma (reduced domain, low-res ⅓rd TCV)
	- \blacksquare Electrostatic potential (not shown): Stronger gradients due to baffle proximity, BC $\phi = \lambda T_a$

- \blacksquare Run with a more realistic, larger, baffled TCV grid
- Refactor, cleanup, and merge back into currently developped GBS version
- \blacksquare Adapt the computation of neutrals

- \blacksquare Run with a more realistic, larger, baffled TCV grid (soon)
- Refactor, cleanup, and merge back into currently developped GBS version
- \blacksquare Adapt the computation of neutrals

- \blacksquare Run with a more realistic, larger, baffled TCV grid (soon)
- Refactor, cleanup, and merge back into currently developped GBS version?
- \blacksquare Adapt the computation of neutrals

- \blacksquare Run with a more realistic, larger, baffled TCV grid (soon)
- Refactor, cleanup, and merge back into currently developped GBS version?
- Adapt the computation of neutrals??

EPFL What Needs to be Done for the Neutrals?

For the inner domain, modifications *look* simple. The computation as it is done now,

- 1. Plasma fields are interpolated on the neutral grid
- 2. Point-to-point paths are constructed in R, ω, Z coordinates

- 3. Path integrals are computed and filled in the kernel matrix
- 4. Kernel matrix is inverted

23L. Stenger

EPFL What Needs to be Done for the Neutrals?

For the inner domain, modifications *look* simple. The computation as it could be done with curvilinear grids,

- 1. Plasma fields are interpolated on the neutral grid
- 2. Point-to-point paths are constructed in R, ω, Z coordinates
- 2b. Paths intersecting walls are eliminated
- **2c.** Paths are interpolated to $\{\xi^i\}_{i}$ coordinates
	- 3. Path integrals are computed and filled in the kernel matrix
	- 4. Kernel matrix is inverted

23L. Stenger

EPFL What Needs to be Done for the Neutrals?

For the inner domain, modifications *look* simple. The computation as it could be done with curvilinear grids,

- 1. Plasma fields are interpolated on the neutral grid
- 2. Point-to-point paths are constructed in R, ω, Z coordinates
- 2b. Paths intersecting walls are eliminated
- **2c.** Paths are interpolated to $\{\xi^i\}_{i}$ coordinates
	- 3. Path integrals are computed and filled in the kernel matrix
- 4. Kernel matrix is inverted

The hard part: Reflections, and in general, any computation involving wall's orientation.

EPFL Bibliography I

- Body, Thomas et al. (2020). "Treatment of Advanced Divertor 手 Configurations in the Flux-Coordinate Independent Turbulence Code GRILLIX." In: *Contributions to Plasma Physics* 60.5-6, e201900139. doi: [10.1002/ctpp.201900139](https://doi.org/10.1002/ctpp.201900139).
- Bufferand, Hugo Georges et al. (2021). "Progress in Edge Plasma Turbulence Modelling Hierarchy of Models from 2D Transport Application to 3D Fluid Simulations in Realistic Tokamak Geometry." In: Nuclear Fusion. pol: [10.1088/1741-4326/ac2873](https://doi.org/10.1088/1741-4326/ac2873).

Dekeyser, W. et al. (Apr. 9, 2021). "Plasma Edge Simulations Including Realistic Wall Geometry with SOLPS-ITER." In: *Nuclear Materials and Energy*, p. 100999. DOI:

[10.1016/j.nme.2021.100999](https://doi.org/10.1016/j.nme.2021.100999).

Dudson, Ben et al. (Aug. 6, 2021). *BOUT++ v4.4.0.* **Zenodo. poi:** [10.5281/zenodo.5167527](https://doi.org/10.5281/zenodo.5167527).

25L. Stenger

EPFL Bibliography II

- Kuang, A. Q. et al. (Oct. 2020). "Divertor Heat Flux Challenge and F Mitigation in SPARC." In: *Journal of Plasma Physics* 86.5. doi: [10.1017/S0022377820001117](https://doi.org/10.1017/S0022377820001117).
- Reimerdes, H. et al. (Jan. 2021). "Initial TCV Operation with a Baffled Divertor." In: *Nuclear Fusion* 61.2, p. 024002. poi: [10.1088/1741-4326/abd196](https://doi.org/10.1088/1741-4326/abd196).
- Sun, G. et al. (Apr. 20, 2023). *Performance Assessment of a Tightly Baffled, Long-Legged Divertor Configuration in TCV with SOLPS-ITER*. doi: [10.48550/arXiv.2303.09195](https://doi.org/10.48550/arXiv.2303.09195). arXiv: [2303.09195 \[physics\]](https://arxiv.org/abs/2303.09195). preprint.
- Wiesenberger, M., M. Held, and L. Einkemmer (July 2017). "Streamline Integration as a Method for Two-Dimensional Elliptic Grid Generation." In: *Journal of Computational Physics* 340, pp. 435–450. doi: [10.1016/j.jcp.2017.03.056](https://doi.org/10.1016/j.jcp.2017.03.056).