

Digital twin of edge tokamak diagnostics for heat exhaust prediction

A. Glasser¹ I. Kudashev¹ F. Schwander¹ E. Serre¹ M. S. d'Abusco² H. Bufferand³ G. Ciraolo³ F. Clairet³ G. Dif-Pradalier³ N. Fedorczak³ Ph. Ghendrih³ S. Hacquin³ A. Jamann³ P. Tamain³ M. Schneider⁴ N. Baubry⁵ E. Loreau⁵ & the WEST team

1 Aix-Marseille University, CNRS, Centrale Méditerranée, M2P2 | 2 Princeton Plasma Physics Laboratory | 3 IRFM, CEA Cadarache | 4 ITER Organization | 5 Centrale Méditerranée

special thanks to AUG, ITER teams and:

- C. Bottereau C. Guillemaut H. Meister
- P. Devynck
- S. Di Genova
- R. Fischer

S. Denk

G. Giorgiani

- C. Gil
- S. Hacquin
- S. Heuraux
- F. Imbeaux
- R. Marcille

D. Vezinet

J. Romazanov

V. Neverov

S. Pinches

D. Zarzoso Fernandez

Outline

Enhancing operational designs with high-fidelity plasma simulation

Core-edge full discharge with SolEdge3X-HDG to follow heat & particle flux evolution

Through IMAS database or code's output		
TWINTOK can use various simulation inputs:		
METIS	[Artaud NF 2018]	
JINTRAC	[Militello IAEA FEC 2021]	
SOLPS	[Wiesen JNM 2015]	[m] Z
SolEdge3X(-HDG)	[Giorgiani JCP 2018]	_
GYSELA	[Dif-Pradalier CP 2022]	_

To study evolution of heat and particle fluxes at the PFC during the full discharge

...

\rightarrow core-edge full discharge simulation

- SolEdge3X-HDG hybridized discontinuous Galerkin fluid transport code
- \circ k-(ϵ) self-consistent transport model
- o advanced fluid neutral model with non-constant diffusion

Target discharge simulation: Ohmic plasma in WEST with varied gas puff rates

Digital twin of edge tokamak diagnostics for heat exhaust prediction

TWINTOK forward models and universal architecture within IMAS

Universal SD architecture within IMAS enabling multi-machine application

ITER Integrated Modelling & Analysis Suite (IMAS)

Interface Data Structure (IDS)

example of SD architecture
class tip:
 init_static(interferometer_MD, param_file)
Reads diagnostic's geometry and parameters
 init_dynamic(equilibrium)
Reads flux quantities, interpolates on the LOS
 evaluate(core_pofiles)
Evaluates density and temperature on the LOS
 fill_in_output_ids(self)
Saves the output into an IDS

spectrometer:

world = World()
plasma = sim.create_plasma(world)
plasma.atomic_data = OpenADAS()
plasma.models=[Bremsstrahlung(),..]
Creates a plasma object in the scene
DVIS2 = FibreOpticGroup(parent=world)
DVIS2.observe()
Creates an observer and calculates the signal
https://git.iter.org/

Cherab/Raysect approach for emission diagnostics: wall description

Digital twin of edge tokamak diagnostics for heat exhaust prediction

Cherab/Raysect approach for emission diagnostics: wall elements as PFC

Example wall observation geometry for AUG shown in blue. Surface normals indicated.

Load the grid vertices

```
for vertex_id in range(num_vertices):
```

```
vertex_coords[vertex_id, :] = (
```

edge_profiles.grid_ggd[index].space[0].objects_per_dimension[0].object[vertex_id].geometry[:])

Initialize the plasma

```
plasma = Plasma(parent=parent, ...)
```

plasma.b_field = VectorAxisymmetricMapper(equilibrium.b_field)

te = edge_profiles.ggd[index].electrons.temperature[0].values

```
ne = edge_profiles.ggd[index].electrons.density[0].values
```

for ion_species in edge_profiles.ggd[index].ion:

ti = ion_species.temperature[0].values

ni = ion_species.density[0].values

for neutral_species in edge_profiles.ggd[index].
neutral:

n0 = neutral_species.density[0].values

Create plasma emission model

plasma.atomic_data = OpenADAS(permit_extrapolation=True)
Define emission lines

```
d_alpha = Line(deuterium, 0, (3,2))
```

```
•••
```

Add emission lines to plasma

```
plasma.models = [
```

Bremsstrahlung(),

```
ExcitationLine(d_alpha),
```

```
RecombinationLine(d_beta), ...
```

Create an observer and calculate the signal DVIS2 = FibreOpticGroup(parent=world) DVIS2.observe() TWINTOK: unveiling synthetic diagnostics for holistic power exhaust investigation

1.90

1.91

1.92

R, m

1.93

1.94

Extensive coverage by TWINTOK allows a thorough validation of simulation results

Extensive coverage by TWINTOK allows a thorough validation of simulation results

Digital twin of edge tokamak diagnostics for heat exhaust prediction

Understanding of plasma composition and configuration through visible emission

[Kudashev Applied Sciences 2022]

Digital twin of edge tokamak diagnostics for heat exhaust prediction

Bolometry synthetic diagnostic: investigating plasma detachment on WEST

DATA ANALYSS SIGNAL

Digital twin of edge tokamak diagnostics for heat exhaust prediction

t = 5.05 s

× specular

20

Channel number

10

30

40

absorbing

 $\times 10^{-5}$

8

6

3

2

0

0

Impurities contribution assessed using HDG+ERO2.0 simulation Ο [Scotto d'Abusco NF 2022, Di Genova NF 2021] [M] 4

- Different wall surface models have strong impact on the signals Ο
- SD participates in the design of the ITER bolometry system Ο

[Meister SOFE 2023]

Interferometer synthetic diagnostic TIP confronting real data to simulation

-0.6

2.00

2.25

2.50

R [m]

3.00

2.75

[Medvedeva 49th EPS

- TIP previously validated METIS+TIP on WEST experimental signals
- 3 different gas puff simulations approach interferometer data
- Discrepancies due to the variation of the optical path and SOL density contribution

$D\alpha$ synthetic diagnostic's high-fidelity reproducing of experimental signals

- Synthetic signals along the divertor targets are calculated considering WEST geometry and wall reflections
- Experimental signal falls between the sheath-limited and high recycling simulations level of $D\alpha$ radiation, aiding in regime determination

- By combining experimental data with synthetic diagnostic signals generated by TWINTOK, we gain a deeper understanding of diagnostics measurements and plasma behavior.
- Universal synthetic diagnostic architecture within IMAS offers a standardized approach for integrating various measurement systems.
- O Achieving the best operation scenarios with reduced heat fluxes and improved confinement demands high-fidelity plasma simulations → SolEdge3X-HDG is under development.
- **TWINTOK forward models** will offer the necessary coverage for measurement interpretation, models validation and operation prediction.