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Aim: turbulent transport modeling and prediction of the entire discharges to
investigate heat and particle exhaust

Most transport simulations are focused on steady state, edge or core plasma:

o large uncertainties on ramp-up phase with neglecting loads on limiters

core and edge plasma are either not coupled or through crude boundary conditions
In this work:

o two improvements of SolEdge-HDG model are demonstrated
m revision of transverse turbulent modelling (starting from Baschetti, et al. 2021)

m  modification of the sources: advanced fluid neutrals and additional heating
o  Two physical points addressed:

m Evolution of heat and particle fluxes at the PFC during the ramp-up

m Distribution of heat and energy between ions and electrons with respect to different
heating regimes
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SolEdge-HDG model
A k-model to go towards a self-consistent transport model
An advanced fluid neutral model with non-constant diffusion

Results:

o Time evolution of heat and particle fluxes at the wall during ramp-up WEST discharge
o Repartition between ion and electron channels with additional heating

Preliminary investigation on growth rate modification



Fluid transport code based on Hybridized 3
Discontinuous Galerkin method (Giorgiani, et al. 2018) o+ - (rub) — V- (D 1n) =
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e Heuristic model of turbulent model transport (Bascheti et al. NF 2021)
turbulent
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evolvtion

1. parallel transport with plasma parallel velocity

2. Perpendicular diffusion with self-consistently defined D:
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3. The same coefficient is used for plasma transport equations




e Heuristic model of turbulent model transport (Bascheti et al. NF 2021)

turbulent
energy

evolvtion
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e Firstintroduced for SolEdge-HDG in (4’ Abusco, et al. 2022)
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e recently modified with self-consistent neutral diffusion coefficient (accepted to Front. Phys.)
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e Neutral moment and boundary conditions should be modified
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e \WEST Ohmic diSCharge #54487 Plasma current

e Current, magnetic field and puff rate from

WEST IMAS g0
e Recycling R =0.998 |
e Two transport models: time [s
<1020 Puff rate
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L _
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e Focusing ramp-up (up to t = 3s)



Evolution of core plasma parameters

Evolution of poloidal profiles of plasma

parameters for simulation with variable diffusion
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e Turbulent model causes higher perpendicular transport:
o wider density profile

o lower energy content
e Trends are similar, but absolute values are not:

o should be higher recycling (probably varying)
o More heating = take into account higher Zeff


https://docs.google.com/file/d/1O4YJZ4I9obBZZf9hBs6-9ln5MN8z0K5A/preview
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e The model predicts higher transport at LFS and at regions with high connection
length ar plasma edge
Non-local turbulent transport effects
e During ramp-up of current the maximum value of diffusion decreases as 1/Ip, 10

which corresponds to global confinement scaling



Evolution of simulated fluxes onto the wall
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Increased turbulent transport causes higher and wider profiles particle fluxes
However, during first 1.3 s peak heat values in both simulations are comparable

Significant fluxes predicted on baffle and upper divertor (especially during

limiter-divertor transition) 11



e (Gaussian circle source of 2 MW applied to ions or electrons
e Centered at the magnetic axis of plasma with width of 15 cm
e Equilibrium at t=4.5 s of discussed discharge, steady-state

e Recycling R =0.998

e Transport model:
L
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o neutrals p _ £loV]
" min(< ov > + < 0V >ip)
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Turbulent diffusion for different heating
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e Additional heating causes significantly higher transport at both divertors
e Since the growth rate is proportional to ion pressure gradient, ion heating
leads to more transport increase
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through electron channel

Slightly lower heat fluxes for the
electron heating are due to lower
plasma resistivity and hence lower
Ohmic heating
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On the way of physical model enrichment in SolEdge-HDG:

o turbulent self-consistent transport model has been revised

o neutral model now employs self-consistent diffusion coefficient

o additional heating sources has been implemented
Simulation of ramp-up of WEST discharge:

o Turbulent diffusivity scales as 1/Ip and mostly localized at separatrix (LFS), and X-points

o Heat and particle fluxes are increased compared to constant diffusion simulation
Additional heating sources simulation

o Significantly increased turbulent transport near lower and upper divertor

o Reduction of T/T_ in far SOL

o Additional heating escapes plasma mostly through electron channel
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%nz,® We start from set of 2 equations:
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e Leaving 1st order terms in 1st equation and up to 2nd order in the 2nd
Linearizing, low B limit, Boussinesq approximation for density, cold ion limit:
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e \We want to linearize parallel losses in a simple form:
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e Current growth rate does not include interchange instability damping
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e Making fourier transformation and solving dispersion equation:
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e Parallel losses act generally as a damping term
e Drifts are driving the instability

e Though interplay between different terms should be studied in details 19
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SolEdge-HDG

e Fluid transport code based on Hybridized
Discontinuous Galerkin method (Giorgiani, et al. 2018)

e Magnetic equilibrium free, high-order meshes

21


https://docs.google.com/file/d/1KGYsnhiT8kp7hJInp8E_4FmR62nFaRuF/preview

Ohmic +2 MW ions Ohmic Ohmic +2 MW elecs

ne [m= n, [m~3]

o n, [m=] _— 100
06 10 - 06 101
109 04 101 10 0.4
02
_ o 1017 101 z 107
E 0% E oo 10 10° E oo
N N N
—02 -0.2
101
107 _oa 10 107 10 107 04
-0.6
1016 1015 101 1015 10 101
T; [eV]
1000 1000 1000 {1000 1000
100 100 100 oo oo
10 10 10 10 10
1 1 1 L L
0.1 . B 0.1
. 01 01 01 35 25 B
. . RIm]
2
Dy [m?/s Dy [m?/s. Dy [m?/s]
i [m?/s] o 15, i [m?/s] 6.0 15 6.0
06
5.0 10 5.0 L0 o
04
4.0 0.5 4.0 o 0.2 0
£
00 £ o0 3.0
3.0 0.0 3.0 S
| -0.2
20 05 2.0 F0:o 20
-0.4
-1.0 1.0
1.0 1.0 1.0 05
15 0.0
00 15 0.0 20 50




