A projection-based approach to handle polar singularities with tensor-product splines

TSVV 10 meeting

Yaman Güçlü ${ }^{1}$, Francesco Patrizi ${ }^{1,2}$, Martin Campos Pinto ${ }^{1}$
${ }^{1}$ NMPP, Max Planck Institute for Plasma Physics
${ }^{2}$ University of Florence

Outline

Motivation
"logical" vs "physical" field spaces

Projection-based approach: a different perspective
Characterizing the pre-polar spline spaces
Computing the conforming projections
Numerical validation in Psydac
Summary

Outline

Motivation

"logical" vs "physical" field spaces

Projection-based approach: a different perspective
Characterizing the pre-polar spline spaces

Computing the conforming projections
Numerical validation in Psydac

Summary

Motivation

Edward L. Moss "Shores of the Polar Sea. A Narrative of the Arctic Expedition of 1875-6"

Y GUCLU, F PATRIZI, M. CAMPOS PINTO I MAY 28, 2024

Motivation

\triangleright polar domains
\triangleright field solvers
\triangleright coupling with particles

Motivation

\triangleright polar domains

- parametrized with tensor-product splines

- structure-preserving coupling

\triangleright polar domains

- parametrized with tensor-product splines
- polar singularity
- \rightsquigarrow lack of smoothness (and integrability!)
\triangleright field solvers
- Poisson, Maxwell, curl-curl ...
- need C^{0} potentials, H (curl) fields
\triangleright coupling with particles
- trajectories
- need smoother potentials and fields
- structure-preserving coupling
- need commuting projections

A word about particles

- Variational particle-field discretization in generic commuting de Rham complexes

\triangleright Action Principle with discrete Lagrangian $\mathcal{L}_{h}\left(\boldsymbol{X}_{N}, \boldsymbol{X}_{N}^{\prime}, \boldsymbol{V}_{N}, \boldsymbol{A}_{h}, \boldsymbol{A}_{h}^{\prime}, \phi_{h}\right)$
\triangleright gauge-free FEM-PIC scheme with

$$
\begin{cases}\boldsymbol{E}_{h}=-\operatorname{grad}_{h} \phi_{h}-\partial_{t} \boldsymbol{A}_{h} & \left(\text { in } V_{h}^{2}\right) \\ \boldsymbol{B}_{h}=\operatorname{curl}_{h} \boldsymbol{A}_{h} & \left(\text { in } V_{h}^{1}\right)\end{cases}
$$

\triangleright Hamiltonian structure ${ }^{1}$: energy stability, discrete Casimirs (Gauss laws ...)

[^0]
Outline

Motivation

"logical" vs "physical" field spaces
Projection-based approach: a different perspective
Characterizing the pre-polar spline spaces
Computing the conforming projections
Numerical validation in Psydac

Summary

"logical" vs "physical" field spaces

Sergio Leone, "Il buono, il brutto, il cattivo" (1966)
"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

- Push-forward operators:

$$
\left\{\begin{array} { l }
{ \mathcal { F } ^ { 0 } : \hat { \phi } \mapsto \phi , } \\
{ \phi (\boldsymbol { x }) = \hat { \phi } (\hat { \boldsymbol { x } }) \notin C ^ { 0 } (\Omega) }
\end{array} \quad \left\{\begin{array} { l }
{ \mathcal { F } ^ { 1 } : \hat { \boldsymbol { E } } \mapsto \boldsymbol { E } , } \\
{ \boldsymbol { E } (\boldsymbol { x }) = D F ^ { - T } \hat { \boldsymbol { E } } (\hat { \boldsymbol { x } }) }
\end{array} \quad \left\{\begin{array}{l}
\mathcal{F}^{2}: \hat{\beta} \mapsto \beta \\
\beta(\boldsymbol{x})=\frac{\hat{\beta}(\hat{\boldsymbol{x}})}{\operatorname{det} D F}
\end{array}\right.\right.\right.
$$

- with polar map: $D F^{-T}=\left(\begin{array}{cc}\cos \theta & -\frac{1}{s} \sin \theta \\ \sin \theta & \frac{1}{s} \cos \theta\end{array}\right) \Longrightarrow E, \beta \notin L^{2}(\Omega)$!
"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

- Push-forward operators:

$$
\left\{\begin{array} { l }
{ \mathcal { F } ^ { 0 } : \hat { \phi } \mapsto \phi , } \\
{ \phi (\boldsymbol { x }) = \hat { \phi } (\hat { \boldsymbol { x } }) \notin C ^ { 0 } (\Omega) }
\end{array} \quad \left\{\begin{array} { l }
{ \mathcal { F } ^ { 1 } : \hat { \boldsymbol { E } } \mapsto \boldsymbol { E } , } \\
{ \boldsymbol { E } (\boldsymbol { x }) = D F ^ { - T } \hat { \boldsymbol { E } } (\hat { \boldsymbol { x } }) }
\end{array} \quad \left\{\begin{array}{l}
\mathcal{F}^{2}: \hat{\beta} \mapsto \beta \\
\beta(\boldsymbol{x})=\frac{\hat{\beta}(\hat{\boldsymbol{x}})}{\operatorname{det} D F}
\end{array}\right.\right.\right.
$$

- with polar map: $D F^{-T}=\left(\begin{array}{cc}\cos \theta & -\frac{1}{s} \sin \theta \\ \sin \theta & \frac{1}{s} \cos \theta\end{array}\right) \Longrightarrow \boldsymbol{E}, \beta \notin L^{2}(\Omega)$! (moreover, curl $\mathcal{F}^{1} \hat{\boldsymbol{E}}=\mathcal{F}^{2}(\operatorname{curl} \hat{\boldsymbol{E}})+\alpha \delta_{(0,0)} \quad$ with $\left.\quad \alpha=\int_{0}^{2 \pi} \hat{E}_{\theta}(0, \theta) \mathrm{d} \theta\right)$
"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

- Push-forward operators:

$$
\left\{\begin{array} { l }
{ \mathcal { F } ^ { 0 } : \hat { \phi } \mapsto \phi , } \\
{ \phi (\boldsymbol { x }) = \hat { \phi } (\hat { \boldsymbol { x } }) \notin C ^ { 0 } (\Omega) }
\end{array} \quad \left\{\begin{array} { l }
{ \mathcal { F } ^ { 1 } : \hat { \boldsymbol { E } } \mapsto \boldsymbol { E } , } \\
{ \boldsymbol { E } (\boldsymbol { x }) = D F ^ { - T } \hat { \boldsymbol { E } } (\hat { \boldsymbol { x } }) }
\end{array} \quad \left\{\begin{array}{l}
\mathcal{F}^{2}: \hat{\beta} \mapsto \beta \\
\beta(\boldsymbol{x})=\frac{\hat{\beta}(\hat{\boldsymbol{x}})}{\operatorname{det} D F}
\end{array}\right.\right.\right.
$$

- with polar map: $D F^{-T}=\left(\begin{array}{cc}\cos \theta & -\frac{1}{s} \sin \theta \\ \sin \theta & \frac{1}{s} \cos \theta\end{array}\right) \Longrightarrow E, \beta \notin L^{2}(\Omega)$! (moreover, curl $\mathcal{F}^{1} \hat{\boldsymbol{E}}=\mathcal{F}^{2}(\operatorname{curl} \hat{\boldsymbol{E}})+\alpha \delta_{(0,0)} \quad$ with $\left.\quad \alpha=\int_{0}^{2 \pi} \hat{E}_{\theta}(0, \theta) \mathrm{d} \theta\right)$
"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

- Existing solution: use smooth polar splines (non tensor-product) $V^{\ell} \subset W^{\ell}$
"logical" vs "physical" field spaces: the Good, the Bad and the Ugly

- Existing solution: use smooth polar splines (non tensor-product) $V^{\ell} \subset W^{\ell}$
- Here: use tensor-product splines and project to $\widehat{V}^{\ell} \subset \widehat{W}^{\ell}$ s.t. $\mathcal{F}^{\ell} \widehat{V}^{\ell}=V^{\ell}$

Bibliography on polar splines

D. Toshniwal, H. Speleers, R. R. Hiemstra \& T. J. Hughes Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis, Computer Methods in Applied Mechanics and Engineering 316 (2017): 1005-1061.
E. Zoni \& Y. Güçlü Solving hyperbolic-elliptic problems on singular mapped disk-like domains with the method of characteristics and spline finite elements, Journal of Computational Physics 398 (2019): 108889.
D. Toshniwal \& T. J. Hughes Isogeometric discrete differential forms: Non-uniform degrees, Bézier extraction, polar splines and flows on surfaces, Computer Methods in Applied Mechanics and Engineering 376 (2021): 113576.
F. Patrizi Isogeometric de Rham complex discretization in solid toroidal domains, arXiv:2106.10470 [math.NA] (2021).
F. Holderied \& S. Possanner Magneto-hydrodynamic eigenvalue solver for axisymmetric equilibria based on smooth polar splines, Journal of Computational Physics 464 (2022): 111329.
A. Bhole, B. Nkonga, S. Pamela, G. Huijsmans, M. Hoelzl \& JOREK team Treatment of polar grid singularities in the bi-cubic Hermite, Journal of Computational Physics 471 (2022): 111611.

Outline

Motivation

"logical" vs "physical" field spaces
Projection-based approach: a different perspective
Characterizing the pre-polar spline spaces

Computing the conforming projections

Numerical validation in Psydac

Summary

Projection-based approach: a different perspective

Paolo Uccello, "Battaglia di San Romano" (1438)

Projection-based approach: a different perspective

- Objective \#1: commuting de Rham diagram of polar splines

Projection-based approach: a different perspective

- Objective \#1: commuting de Rham diagram of polar splines
- Objective \#2: work with tensor-product splines

Projection-based approach: a different perspective

- Objective \#1: commuting de Rham diagram of polar splines
- Objective \#2: work with tensor-product splines
- Idea: use conforming projections, not conforming bases

Projection-based approach: a different perspective

- Advantage \#1: allows re-use of full tensor-product splines spaces and operators
- Advantage \#2: similar treatment of multi-patch domains (broken-FEEC)

Projection-based approach: a different perspective

- Advantage \#1: allows re-use of full tensor-product splines spaces and operators
- Advantage \#2: similar treatment of multi-patch domains (broken-FEEC)
- $仓$ design of good conforming projections \rightarrow careful design

Conforming vs. projection-based (CONGA) approach: Poisson

- Model and conforming discretization:

$$
\left\{\begin{array}{rl}
-\Delta \phi=f & \text { in } \Omega \\
\phi=0 & \text { on } \partial \Omega,
\end{array} \quad \rightsquigarrow \quad \mathbb{S}_{p} \phi_{p}=\mathbf{f}_{p}\right.
$$

with $\left(\mathbb{S}_{p}\right)_{a, b}=\int_{\Omega} \nabla \Lambda_{a}^{0, p} \cdot \nabla \Lambda_{a}^{0, p} \mathrm{~d} x \mathrm{~d} y$ the stiffness matrix in the polar spline basis.

- CONGA discretization:

$$
\left(\alpha\left(\mathbb{I}-\mathbb{P}^{0}\right)^{T} \mathbb{M}\left(\mathbb{I}-\mathbb{P}^{0}\right)+\left(\mathbb{P}^{0}\right)^{T} \mathbb{S P}^{0}\right) \phi=\left(\mathbb{P}^{0}\right)^{T} \mathbf{f}
$$

with $\alpha>0$ and
$\left\{\begin{array}{l}\mathbb{M}^{0}, \mathbb{S}: \text { the mass and stiffness matrices in the full spline basis. } \\ \mathbb{P}^{0}: \text { the projection matrix onto the polar splines, in the full spline basis. }\end{array}\right.$

Conforming vs. projection-based (CONGA) approach: Maxwell

- Model and conforming discretization:

$$
\left\{\begin{array} { r }
{ \partial _ { t } B + \operatorname { c u r l } E = 0 , } \\
{ \frac { 1 } { c ^ { 2 } } \partial _ { t } \boldsymbol { E } - \operatorname { c u r l } B = 0 , }
\end{array} \quad \rightsquigarrow \quad \left\{\begin{array}{r}
\partial_{t} \mathbf{B}_{p}+\mathbb{C}_{p} \mathbf{E}_{p}=0 \\
\partial_{t} \mathbb{M}_{p}^{1} \mathbf{E}_{p}-\mathbb{C}_{p}^{T} \mathbb{M}_{p}^{2} \mathbf{B}_{p}=0
\end{array}\right.\right.
$$

with curl and mass matrices in the polar spline basis.

- CONGA discretization:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{B}+\mathbb{C} \mathbb{P}^{1} \mathbf{E} & =0 \\
\partial_{t} \tilde{\mathbb{M}}^{1} \mathbf{E}-\left(\mathbb{C P}^{1}\right)^{T} \tilde{\mathbb{M}}^{2} \mathbf{B} & =0
\end{aligned}\right.
$$

with curl and (regularized) mass matrices in the full spline basis

- Note: § the mass matrices must be regularized because $W_{h}^{1}, W_{h}^{2} \not \subset L^{2}(\Omega)$.

$$
\text { We set: } \quad \tilde{\mathbb{M}}^{\ell}:=\frac{1}{n_{s} n_{\theta}}\left(\mathbb{I}-\mathbb{P}^{\ell}\right)^{T}\left(\mathbb{I}-\mathbb{P}^{\ell}\right)+\left(\mathbb{P}^{\ell}\right)^{T} \mathbb{M}^{\ell} \mathbb{P}^{\ell}
$$

Outline

Motivation

"logical" vs "physical" field spaces

Projection-based approach: a different perspective
Characterizing the pre-polar spline spaces

Computing the conforming projections

Numerical validation in Psydac

Summary

Characterizing the pre-polar spline spaces

Sandro Botticelli,"Mappa dell' Inferno" (ca 1490)

Characterizing the pre-polar spline spaces

$$
\begin{aligned}
& \left\{\begin{array}{l}
\widehat{W}_{h}^{0}=\mathbb{S}^{p_{s}, p_{\theta}}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{0}:=B_{i}(s) \grave{B}_{j}(\theta)\right\} \\
\widehat{W}_{h}^{1}=\binom{\mathbb{S}^{p_{s}-1, p_{\theta}}}{\mathbb{S}^{p_{s}, p_{\theta}-1}}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{1, s}=\binom{M_{i}(s) \AA_{j}(\theta)}{0}, \hat{\Lambda}_{i j}^{1, \theta}=\binom{0}{B_{i}(s) \grave{M}_{j}(\theta)}\right\} \\
\widehat{W}_{h}^{2}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{2}=M_{i}(s) \dot{M}_{j}(\theta)\right\}
\end{array}\right.
\end{aligned}
$$

- Pre-polar spline spaces:
Ω

$\left(仓\right.$ now $\left.F \in\left(\mathbb{S}^{p_{s}, p_{\theta}}\right)^{2}\right)$

Characterizing the pre-polar spline spaces

$$
\begin{aligned}
& F:\binom{s}{\theta} \rightarrow \sum_{i, j} \rho_{i}\binom{\cos \theta_{j}}{\sin \theta_{j}} B_{i}(s) \AA_{k}(\theta) \quad \text { with } \quad \begin{cases}\rho_{i}:=\frac{i}{n_{s}-1} & 0 \leq i<n_{s} \\
\theta_{j}:=\frac{2 \pi k}{n_{\theta}} & 0 \leq j<n_{\theta}\end{cases} \\
& \left(\widehat{W}_{h}^{0}=\mathbb{S}^{p_{s}, p_{\theta}}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{0}:=B_{i}(s) \dot{B}_{j}(\theta)\right\}\right. \\
& \left\{\begin{array}{l}
\widehat{W}_{h}^{1}=\binom{\mathbb{S}^{p_{s}-1, p_{\theta}}}{\mathbb{S}_{s}, p_{\theta}-1}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{1, s}=\binom{M_{i}(s) \AA_{j}(\theta)}{0}, \hat{\Lambda}_{i j}^{1, \theta}=\binom{0}{B_{i}(s) \dot{M}_{j}(\theta)}\right\} \\
\widehat{W}_{h}^{2}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{2}=M_{i}(s) \grave{M}_{j}(\theta)\right\}
\end{array}\right.
\end{aligned}
$$

- Pre-polar spline spaces: C^{0} sequence
Ω

$$
\left\{\begin{array}{l}
\widehat{V}_{h}^{0}=\left\{\hat{\phi} \in \widehat{W}_{h}^{0}: \mathcal{F}^{0} \hat{\phi} \in C^{0}(\Omega)\right\} \\
\widehat{V}_{h}^{1}=\left\{\hat{\boldsymbol{E}} \in \widehat{W}_{h}^{1}: \mathcal{F}^{1} \hat{\boldsymbol{E}} \in H(\text { curl; } \Omega)\right\} \\
\widehat{V}_{h}^{2}=\left\{\hat{\beta} \in \widehat{W}_{h}^{2}: \mathcal{F}^{2} \hat{\beta} \in L^{2}(\Omega)\right\}
\end{array}\right.
$$

Characterizing the pre-polar spline spaces

$$
\begin{aligned}
& F:\binom{s}{\theta} \rightarrow \sum_{i, j} \rho_{i}\binom{\cos \theta_{j}}{\sin \theta_{j}} B_{i}(s) \AA_{k}(\theta) \quad \text { with } \quad \begin{cases}\rho_{i}:=\frac{i}{n_{s}-1} & 0 \leq i<n_{s} \\
\theta_{j}:=\frac{2 \pi k}{n_{\theta}} & 0 \leq j<n_{\theta}\end{cases} \\
&\left\{\begin{array}{l}
\widehat{W}_{h}^{0}=\mathbb{S}^{p_{s}, p_{\theta}}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{0}:=B_{i}(s) \AA_{j}(\theta)\right\} \\
\widehat{W}_{h}^{1}=\binom{\mathbb{S}^{p_{s}-1, p_{\theta}}}{\mathbb{S}_{s}, p_{\theta}-1}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{1, s}=\binom{M_{i}(s) \AA_{j}(\theta)}{0}, \hat{\Lambda}_{i j}^{1, \theta}=\binom{0}{B_{i}(s) \AA_{j}(\theta)}\right\} \\
\widehat{W}_{h}^{2}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{2}=M_{i}(s) \AA_{j}(\theta)\right\}
\end{array}\right.
\end{aligned}
$$

- Pre-polar spline spaces: C^{0} sequence
Ω

now $\left.F \in\left(\mathbb{S}^{p_{s}, p_{\theta}}\right)^{2}\right)$

$$
\begin{cases}\widehat{V}_{h}^{0}=\left\{\hat{\phi} \in \widehat{W}_{h}^{0}: \mathcal{F}^{0} \hat{\phi} \in C^{0}(\Omega)\right\} & =\left\{\hat{\phi}=\sum_{i j} \phi_{i j} \widehat{\Lambda}_{i j}^{0}: \phi_{0 j}=\phi_{00} \forall j\right\} \\
\widehat{V}_{h}^{1}=\left\{\widehat{\boldsymbol{E}} \in \widehat{W}_{h}^{1}: \mathcal{F}^{1} \widehat{\boldsymbol{E}} \in H(\operatorname{curl} ; \Omega)\right\} & =\left\{\hat{\boldsymbol{E}}=\sum_{d, i, j} E_{i, j}^{d} \widehat{\boldsymbol{\Lambda}}_{i j}^{1, d}:\left\{\begin{array}{l}
E_{0 j}^{\theta}=0 \\
E_{1 j}^{\theta}=E_{0(j+1)}^{s}-E_{0 j}^{s}
\end{array}\right\} j\right. \\
\widehat{V}_{h}^{2}=\left\{\hat{\beta} \in \widehat{W}_{h}^{2}: \mathcal{F}^{2} \hat{\beta} \in L^{2}(\Omega)\right\} & =\left\{\hat{\beta}=\sum_{i j} \beta_{i j} \widehat{\Lambda}_{i j}^{2}: \beta_{0 j}=0 \forall j\right\}\end{cases}
$$

Characterizing the pre-polar spline spaces

- Pre-polar spline spaces: C^{1} sequence
Ω

$$
\left\{\begin{array}{l}
\widehat{U}_{h}^{0}=\left\{\hat{\phi} \in \widehat{V}_{h}^{0}: \mathcal{F}^{0} \hat{\phi} \in C^{1}(\Omega)\right\} \\
\widehat{U}_{h}^{1}=\left\{\widehat{\boldsymbol{E}} \in \widehat{V}_{h}^{1}: \mathcal{F}^{1} \widehat{\boldsymbol{E}} \in C^{0}(\Omega)\right\}
\end{array}\right.
$$

$$
\text { now } \left.F \in\left(\mathbb{S}^{p_{s}, p_{\theta}}\right)^{2}\right)
$$

$$
\begin{aligned}
& F:\binom{s}{\theta} \rightarrow \sum_{i, j} \rho_{i}\binom{\cos \theta_{j}}{\sin \theta_{j}} B_{i}(s) \AA_{k}(\theta) \quad \text { with } \quad \begin{cases}\rho_{i}:=\frac{i}{n_{s}-1} & 0 \leq i<n_{s} \\
\theta_{j}:=\frac{2 \pi k}{n_{\theta}} & 0 \leq j<n_{\theta}\end{cases} \\
& \left(\widehat{W}_{h}^{0}=\mathbb{S}^{p_{s}, p_{\theta}}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{0}:=B_{i}(s) \dot{B}_{j}(\theta)\right\}\right. \\
& \left\{\begin{array}{l}
\widehat{W}_{h}^{1}=\binom{\mathbb{S}^{p_{s}-1, p_{\theta}}}{\mathbb{S}_{s}, p_{\theta}-1}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{1, s}=\binom{M_{i}(s) \AA_{j}(\theta)}{0}, \hat{\Lambda}_{i j}^{1, \theta}=\binom{0}{B_{i}(s) \dot{M}_{j}(\theta)}\right\} \\
\widehat{W}_{h}^{2}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{2}=M_{i}(s) \grave{M}_{j}(\theta)\right\}
\end{array}\right.
\end{aligned}
$$

Characterizing the pre-polar spline spaces

$$
\begin{aligned}
& \\
& F:\binom{s}{\theta} \rightarrow \sum_{i, j} \rho_{i}\binom{\cos \theta_{j}}{\sin \theta_{j}} B_{i}(s) \stackrel{\circ}{B}_{k}(\theta) \quad \text { with } \quad \begin{cases}\rho_{i}:=\frac{i}{n_{s}-1} & 0 \leq i<n_{s} \\
\theta_{j}:=\frac{2 \pi k}{n_{\theta}} & 0 \leq j<n_{\theta}\end{cases} \\
& \left\{\begin{array}{l}
\widehat{W}_{h}^{0}=\mathbb{S}^{p_{s}, p_{\theta}}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{0}:=B_{i}(s) \AA_{j}(\theta)\right\} \\
\widehat{W}_{h}^{1}=\binom{\mathbb{S}^{p_{s}}-1, p_{\theta}}{\mathbb{S}^{p_{s}, p_{\theta}-1}}=\operatorname{Span}\left\{\hat{\Lambda}_{i j}^{1, s}=\binom{M_{i}(s) \AA_{j}(\theta)}{0}, \hat{\Lambda}_{i j}^{1, \theta}=\binom{0}{B_{i}(s) \grave{M}_{j}(\theta)}\right\} \\
\widehat{W}_{h}^{2}=\operatorname{Span}\left\{\widehat{\Lambda}_{i j}^{2}=M_{i}(s) \check{M}_{j}(\theta)\right\}
\end{array}\right.
\end{aligned}
$$

- Pre-polar spline spaces: C^{1} sequence
Ω

now $\left.F \in\left(\mathbb{S}^{p_{s}, p_{\theta}}\right)^{2}\right)$

$$
\left\{\begin{array}{l}
\widehat{U}_{h}^{0}=\left\{\hat{\phi} \in \widehat{V}_{h}^{0}: \mathcal{F}^{0} \hat{\phi} \in C^{1}(\Omega)\right\}=\left\{\hat{\phi} \in \widehat{W}_{h}^{0}:\left\{\begin{array}{l}
\phi_{0 j}=\phi_{00} \\
\phi_{1 j}-\phi_{0 j}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j}
\end{array} \forall j\right\}\right. \\
\widehat{U}_{h}^{1}=\left\{\widehat{\boldsymbol{E}} \in \widehat{V}_{h}^{1}: \mathcal{F}^{1} \widehat{\boldsymbol{E}} \in C^{0}(\Omega)\right\}=\left\{\hat{\boldsymbol{E}} \in \widehat{W}_{h}^{1}:\left\{\begin{array}{l}
E_{0 j}^{\theta}=0 \\
E_{1 j}^{\theta}=E_{0(j+1)}^{s}-E_{0 j}^{s} \\
E_{0 j}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j}
\end{array}\right\}\right. \\
\widehat{U}_{h}^{2}=\left\{\hat{\beta} \in \widehat{V}_{h}^{2}: \mathcal{F}^{2} \hat{\beta} \in L^{2}(\Omega)\right\}=\widehat{V}_{h}^{2}
\end{array}\right.
$$

Outline

Motivation

"logical" vs "physical" field spaces

Projection-based approach: a different perspective

Characterizing the pre-polar spline spaces
Computing the conforming projections

Numerical validation in Psydac

Summary

Computing the conforming projections

Cimbali, macchina M100 in Firenze (ca 2020)

Determination of the CONGA Projectors

P^{ℓ} operators on W_{h}^{ℓ}, for $\ell=0,1,2$, characterized by:

Determination of the CONGA Projectors

P^{ℓ} operators on W_{h}^{ℓ}, for $\ell=0,1,2$, characterized by:

- Range property: $\operatorname{Im}\left(P^{\ell}\right) \subseteq V_{h}^{\ell}$
- Projection property: $P^{\ell} u=u$ for $u \in V_{h}^{\ell}$
- Commuting property: $\begin{cases}\operatorname{grad} \circ P^{0}=P^{1} \circ \operatorname{grad} & \text { on } \operatorname{Im}\left(\Pi_{W}^{0}\right) \subseteq W_{h}^{0}, \\ \text { curl } \circ P^{1}=P^{2} \circ \text { curl } & \text { on } \operatorname{Im}\left(\Pi_{W}^{1}\right) \subseteq W_{h}^{1} .\end{cases}$

CONGA Projector P^{0} for the C^{0} sequence

$$
V_{h}^{0}=\left\{\phi=\sum_{i, j} \phi_{i j} \Lambda_{i j}^{0} \in W_{h}^{0}: \phi_{0 j}=\phi_{00} \quad \forall j\right\}
$$

CONGA Projector P^{0} for the C^{0} sequence

$$
\begin{aligned}
& \qquad V_{h}^{0}=\left\{\phi=\sum_{i, j} \phi_{i j} \Lambda_{i j}^{0} \in W_{h}^{0}: \phi_{0 j}=\phi_{00} \quad \forall j\right\} \\
& \Rightarrow \Lambda_{i j}^{0} \in V_{h}^{0} \text { for } i \geq 1
\end{aligned}
$$

Projection property: $P^{0} \phi=\phi$ for $\phi \in V_{h}^{0} \Rightarrow P^{0} \Lambda_{i j}^{0}=\Lambda_{i j}^{0} \forall i \geq 1$

CONGA Projector P^{0} for the C^{0} sequence

$$
V_{h}^{0}=\left\{\phi=\sum_{i, j} \phi_{i j} \Lambda_{i j}^{0} \in W_{h}^{0}: \phi_{0 j}=\phi_{00} \quad \forall j\right\}
$$

$\Rightarrow \Lambda_{i j}^{0} \in V_{h}^{0}$ for $i \geq 1$
Projection property: $P^{0} \phi=\phi$ for $\phi \in V_{h}^{0} \Rightarrow P^{0} \Lambda_{i j}^{0}=\Lambda_{i j}^{0} \forall i \geq 1$
Project $\Lambda_{0 j}^{0}$ to any function in V_{h}^{0}

$$
\text { Symmetry in } j \Rightarrow P^{0} \Lambda_{0 j}^{0}=\frac{1}{n_{\theta}} \sum_{k=0}^{n_{\theta}-1} \Lambda_{0 k}^{0}
$$

CONGA Projector P^{0} for the C^{1} sequence

$\phi \in W_{h}^{0}, \phi=\boldsymbol{\Lambda}^{0, T} \boldsymbol{\phi}$, we set

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right) \quad \text { (square matrix) }
$$

with $\mathbb{P}^{0}=\mathbb{E}^{0, T} \mathbb{S}^{0}, \mathbb{S}^{0}$ to be defined.

CONGA Projector P^{0} for the C^{1} sequence

$\phi \in W_{h}^{0}, \phi=\boldsymbol{\Lambda}^{0, T} \phi$, we set

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right) \quad \text { (square matrix) }
$$

with $\mathbb{P}^{0}=\mathbb{E}^{0, T} \mathbb{S}^{0}, \mathbb{S}^{0}$ to be defined. Range property verified for any \mathbb{S}^{0} :

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right)=\Lambda^{0, T}\left(\mathbb{E}^{0, T} \mathbb{S}^{0} \phi\right)=\left(\Lambda^{0, T} \mathbb{E}^{0, T}\right) \mathbb{S}^{0} \phi=\boldsymbol{S}^{0, T} \varphi
$$

with $\varphi=\mathbb{S}^{0} \boldsymbol{\phi}$.

CONGA Projector P^{0} for the C^{1} sequence

$\phi \in W_{h}^{0}, \phi=\boldsymbol{\Lambda}^{0, T} \phi$, we set

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right) \quad \text { (square matrix) }
$$

with $\mathbb{P}^{0}=\mathbb{E}^{0, T} \mathbb{S}^{0}, \mathbb{S}^{0}$ to be defined. Range property verified for any \mathbb{S}^{0} :

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right)=\Lambda^{0, T}\left(\mathbb{E}^{0, T} \mathbb{S}^{0} \phi\right)=\left(\Lambda^{0, T} \mathbb{E}^{0, T}\right) \mathbb{S}^{0} \phi=\boldsymbol{S}^{0, T} \varphi
$$

with $\varphi=\mathbb{S}^{0} \boldsymbol{\phi}$. In order for P^{0} to have the Projection property we look for \mathbb{S}^{0} such that $\mathbb{S}^{0} \mathbb{E}^{0, T}=\mathbb{I}$ (i.e., \mathbb{S}^{0} left-inverse $\mathbb{E}^{0, T}$).
Thereby, by recalling that $V_{h}^{0} \ni \varphi=\boldsymbol{S}^{0, T} \varphi=\boldsymbol{\Lambda}^{0, T}\left(\mathbb{E}^{0, T} \varphi\right)$, we get the Projection property

$$
P^{0} \varphi=\Lambda^{0, T}\left(\mathbb{P}^{0} \mathbb{E}^{0, T} \varphi\right)=\Lambda^{0, T}(\mathbb{E}^{0, T} \underbrace{\mathbb{S}^{0} \mathbb{E}^{0, T}}_{\mathbb{I}} \varphi)=\Lambda^{0, T}\left(\mathbb{E}^{0, T} \varphi\right)=S^{0, T} \varphi=\varphi
$$

CONGA Projector P^{0} for the C^{1} sequence

$\phi \in W_{h}^{0}, \phi=\Lambda^{0, T} \phi$, we set

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right) \quad \text { (square matrix) }
$$

with $\mathbb{P}^{0}=\mathbb{E}^{0, T} \mathbb{S}^{0}, \mathbb{S}^{0}$ to be defined. Range property verified for any \mathbb{S}^{0} :

$$
P^{0} \phi=\Lambda^{0, T}\left(\mathbb{P}^{0} \phi\right)=\Lambda^{0, T}\left(\mathbb{E}^{0, T} \mathbb{S}^{0} \phi\right)=\left(\Lambda^{0, T} \mathbb{E}^{0, T}\right) \mathbb{S}^{0} \phi=\boldsymbol{S}^{0, T} \varphi
$$

with $\varphi=\mathbb{S}^{0} \boldsymbol{\phi}$. In order for P^{0} to have the Projection property we look for \mathbb{S}^{0} such that $\mathbb{S}^{0} \mathbb{E}^{0, T}=\mathbb{I}$ (i.e., \mathbb{S}^{0} left-inverse $\mathbb{E}^{0, T}$).
Thereby, by recalling that $V_{h}^{0} \ni \varphi=\boldsymbol{S}^{0, T} \varphi=\boldsymbol{\Lambda}^{0, T}\left(\mathbb{E}^{0, T} \varphi\right)$, we get the Projection property

$$
P^{0} \varphi=\Lambda^{0, T}\left(\mathbb{P}^{0} \mathbb{E}^{0, T} \varphi\right)=\Lambda^{0, T}(\mathbb{E}^{0, T} \underbrace{\mathbb{S}^{0} \mathbb{E}^{0, T}}_{\mathbb{I}} \varphi)=\Lambda^{0, T}\left(\mathbb{E}^{0, T} \varphi\right)=S^{0, T} \varphi=\varphi
$$

Left-inverse of a rectangular matrix not unique.
$\mathbb{E}^{0}=\left[\begin{array}{cc}\mathbb{X}^{0} & 0 \\ 0 & \mathbb{I}\end{array}\right] \Rightarrow \mathbb{S}^{0}=\left[\begin{array}{cc}s^{0} & 0 \\ 0 & \mathbb{I}\end{array}\right], \quad$ with $\boldsymbol{s}^{0}=s_{\gamma}^{0}$ determined from symmetry arguments

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
V_{h}^{1}=\left\{\psi=\sum_{i, j} \psi_{i, j}^{s} \Lambda_{i j}^{1, s}+\sum_{i, j} \psi_{i, j}^{\theta} \Lambda_{i j}^{1, \theta} \in W_{h}^{1}: \psi_{0 j}^{\theta}=0 \wedge \psi_{1 j}^{\theta}=\psi_{0(j+1)}^{s}-\psi_{0 j}^{s} \forall j\right\}
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
\begin{aligned}
& V_{h}^{1}=\left\{\psi=\sum_{i, j} \psi_{i, j}^{s} \Lambda_{i j}^{1, s}+\sum_{i, j} \psi_{i, j}^{\theta} \Lambda_{i j}^{1, \theta} \in W_{h}^{1}: \psi_{0 j}^{\theta}=0 \wedge \psi_{1 j}^{\theta}=\psi_{0(j+1)}^{s}-\psi_{0 j}^{s} \forall j\right\} \\
\Rightarrow & \Lambda_{i j}^{1, s} \text { for } i \geq 1 \text { and } \Lambda_{i j}^{1, \theta} \text { for } i \geq 2 \text { are in } V_{h}^{1}
\end{aligned}
$$

Projection property: $P^{1} \psi=\psi$ for $\psi \in V_{h}^{1} \Rightarrow P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \forall i \geq 1 \wedge P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \forall i \geq 2$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
V_{h}^{1}=\left\{\psi=\sum_{i, j} \psi_{i, j}^{s} \Lambda_{i j}^{1, s}+\sum_{i, j} \psi_{i, j}^{\theta} \Lambda_{i j}^{1, \theta} \in W_{h}^{1}: \psi_{0 j}^{\theta}=0 \wedge \psi_{1 j}^{\theta}=\psi_{0, j(j+1)}^{s}-\psi_{0 j}^{s} \forall j\right\}
$$

$$
\Rightarrow \Lambda_{i j}^{1, s} \text { for } i \geq 1 \text { and } \Lambda_{i j}^{1, \theta} \text { for } i \geq 2 \text { are in } V_{h}^{1}
$$

Projection property: $P^{1} \psi=\psi$ for $\psi \in V_{h}^{1} \Rightarrow P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \forall i \geq 1 \wedge P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \forall i \geq 2$

$$
\begin{aligned}
\Lambda_{0 j}^{1, s}, \Lambda_{0 j}^{1, \theta}, \Lambda_{1 j}^{1, \theta} \notin & V_{h}^{1} \text { BUT } \psi_{j}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta} \in V_{h}^{1} \\
& \Rightarrow P^{1}\left(\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}\right)=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}
\end{aligned}
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$\Rightarrow\left\{\begin{array}{l}P^{1} \Lambda_{0 j}^{1, \theta}=\boldsymbol{Q}_{0 j} \\ P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j} \\ P^{1} \Lambda_{0 j}^{1, s}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}+\boldsymbol{Q}_{1 j}-\boldsymbol{Q}_{1(j-1)}\end{array}\right.$
with $Q_{0 j}, Q_{1 j} \in V_{h}^{1}$ to be determined by imposing commutation with P^{2}. Remark: Commutation with P^{0} true for any choice of P^{1}, as long as it is a projector, as one can show that $\operatorname{lm} \Pi_{W}^{0} \subseteq V_{h}^{0}$, so that $\operatorname{grad} P^{0} \phi=\operatorname{grad} \phi=P^{1} \operatorname{grad} \phi$.

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
\Rightarrow\left\{\begin{array}{l}
P^{1} \Lambda_{0 j}^{1, \theta}=\boldsymbol{Q}_{0 j} \\
P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j} \\
P^{1} \Lambda_{0 j}^{1, s}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}+\boldsymbol{Q}_{1 j}-\boldsymbol{Q}_{1(j-1)}
\end{array}\right.
$$

with $Q_{0 j}, Q_{1 j} \in V_{h}^{1}$ to be determined by imposing commutation with P^{2}. Remark: Commutation with P^{0} true for any choice of P^{1}, as long as it is a projector, as one can show that Im $\Pi_{W}^{0} \subseteq V_{h}^{0}$, so that
$\operatorname{grad} P^{0} \phi=\operatorname{grad} \phi=P^{1} \operatorname{grad} \phi$.

$$
V_{h}^{2}=\left\{\eta=\sum_{i, j} \eta_{i j} \wedge_{i j}^{2} \in W_{h}^{2}: \eta_{0 j}=0 \forall j\right\}
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
\Rightarrow\left\{\begin{array}{l}
P^{1} \Lambda_{0 j}^{1, \theta}=\boldsymbol{Q}_{0 j} \\
P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j} \\
P^{1} \Lambda_{0 j}^{1, s}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}+\boldsymbol{Q}_{1 j}-\boldsymbol{Q}_{1(j-1)}
\end{array}\right.
$$

with $Q_{0 j}, Q_{1 j} \in V_{h}^{1}$ to be determined by imposing commutation with P^{2}. Remark: Commutation with P^{0} true for any choice of P^{1}, as long as it is a projector, as one can show that $\operatorname{Im} \Pi_{W}^{0} \subseteq V_{h}^{0}$, so that $\operatorname{grad} P^{0} \phi=\operatorname{grad} \phi=P^{1} \operatorname{grad} \phi$.

$$
V_{h}^{2}=\left\{\eta=\sum_{i, j} \eta_{i j} \wedge_{i j}^{2} \in W_{h}^{2}: \eta_{0 j}=0 \forall j\right\}
$$

$\Rightarrow \Lambda_{i j}^{2} \in V_{h}^{2}$ for $i \geq 1$.
Projection property: $P^{2} \eta=\eta$ for $\eta \in V_{h}^{2} \Rightarrow P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \forall i \geq 1$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

$$
\Rightarrow\left\{\begin{array}{l}
P^{1} \Lambda_{0 j}^{1, \theta}=\boldsymbol{Q}_{0 j} \\
P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j} \\
P^{1} \Lambda_{0 j}^{1, s}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta}+\boldsymbol{Q}_{1 j}-\boldsymbol{Q}_{1(j-1)}
\end{array}\right.
$$

with $Q_{0 j}, Q_{1 j} \in V_{h}^{1}$ to be determined by imposing commutation with P^{2}. Remark: Commutation with P^{0} true for any choice of P^{1}, as long as it is a projector, as one can show that $\operatorname{Im} \Pi_{W}^{0} \subseteq V_{h}^{0}$, so that $\operatorname{grad} P^{0} \phi=\operatorname{grad} \phi=P^{1} \operatorname{grad} \phi$.

$$
V_{h}^{2}=\left\{\eta=\sum_{i, j} \eta_{i j} \wedge_{i j}^{2} \in W_{h}^{2}: \eta_{0 j}=0 \forall j\right\}
$$

$\Rightarrow \Lambda_{i j}^{2} \in V_{h}^{2}$ for $i \geq 1$.
Projection property: $P^{2} \eta=\eta$ for $\eta \in V_{h}^{2} \Rightarrow P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \forall i \geq 1$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 0 j } } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + \boldsymbol { Q } _ { 1 j } - \boldsymbol { Q } _ { 1 (j - 1) } } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1 .
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = Q _ { 0 j } } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + \boldsymbol { Q } _ { 1 j } - \boldsymbol { Q } _ { 1 (j - 1) } } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1 .
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \mathbf { 0 } } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + \boldsymbol { Q } _ { 1 j } - \boldsymbol { Q } _ { 1 (j - 1) } } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1 .
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = 0 } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = Q _ { 1 j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + \boldsymbol { Q } _ { 1 j } - \boldsymbol { Q } _ { 1 (j - 1) } } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1 .
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \mathbf { 0 } } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \mathbf { 0 } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + \boldsymbol { Q } _ { 1 j } - \boldsymbol { Q } _ { 1 (j - 1) } \quad } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1 .
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} Q_{1 j}+\Lambda_{1 j}^{2}$ then curl $P^{1} \psi=P^{2} \operatorname{curl} \psi \quad \forall \psi \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array} { l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = 0 } \\
{ P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = 0 } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \Lambda _ { 0 j } ^ { 1 , s } + \Lambda _ { 1 (j - 1) } ^ { 1 , \theta } - \Lambda _ { 1 j } ^ { 1 , \theta } + Q _ { 1 j } - Q _ { 1 (j - 1) } } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \quad \forall i \geq 1 } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \quad \forall i \geq 2 }
\end{array} \quad \left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=G_{j} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{0} sequence

Proposition: if $G_{j}=\operatorname{curl} \boldsymbol{Q}_{1 j}+\Lambda_{1 j}^{2}$ then $\operatorname{curl} P^{1} \boldsymbol{\psi}=P^{2} \operatorname{curl} \boldsymbol{\psi} \quad \forall \boldsymbol{\psi} \in \operatorname{Im} \Pi_{W}^{1}$.

$$
\Rightarrow\left\{\begin{array}{l}
P^{1} \Lambda_{0 j}^{1, \theta}=0 \\
P^{1} \Lambda_{1 j}^{1, \theta}=0 \\
P^{1} \Lambda_{0 j}^{1, s}=\Lambda_{0 j}^{1, s}+\Lambda_{1(j-1)}^{1, \theta}-\Lambda_{1 j}^{1, \theta} \\
P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \quad \forall i \geq 1 \\
P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \quad \forall i \geq 2
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
P^{2} \Lambda_{0 j}^{2}=\Lambda_{1 j}^{2} \\
P^{2} \Lambda_{i j}^{2}=\Lambda_{i j}^{2} \quad \forall i \geq 1
\end{array}\right.
$$

This choice is convenient as all the projections are local and invariant w.r.t. j.

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
V_{h}^{1}=\left\{\psi=\boldsymbol{\Lambda}^{1, \boldsymbol{T}} \boldsymbol{\psi}=\binom{\left(\boldsymbol{\Lambda}^{1, s}\right)^{T} \boldsymbol{\psi}^{s}}{\left(\boldsymbol{\Lambda}^{1, \theta}\right)^{T} \boldsymbol{\psi}^{\theta}}: \begin{array}{l}
\psi_{0 j}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j} \\
\psi_{0 j}^{\theta}=0 \\
\psi_{1 j}^{\theta}=\psi_{0(j+1)}^{s}-\psi_{0 j}^{s}
\end{array}\right\} \text { with } \boldsymbol{\Lambda}^{1}=\binom{\boldsymbol{\Lambda}^{1, s}}{\boldsymbol{\Lambda}^{,, \theta}}, \boldsymbol{\psi}=\binom{\boldsymbol{\psi}^{s}}{\boldsymbol{\psi}^{\theta}}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
V_{h}^{1}=\left\{\psi=\boldsymbol{\Lambda}^{1, \boldsymbol{T}} \boldsymbol{\psi}=\binom{\left(\boldsymbol{\Lambda}^{1, s}\right)^{T} \psi^{s}}{\left(\boldsymbol{\Lambda}^{1, \theta}\right)^{T} \boldsymbol{\psi}^{\theta}}: \begin{array}{l}
\psi_{0 j}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j} \\
\psi_{0 j}^{\theta}=0 \\
\psi_{1 j}^{\theta}=\psi_{0(j+1)}^{s}-\psi_{0 j}^{s}
\end{array}\right\} \text { with } \boldsymbol{\Lambda}^{1}=\binom{\boldsymbol{\Lambda}^{1, s}}{\boldsymbol{\Lambda}^{1, \theta}}, \boldsymbol{\psi}=\binom{\boldsymbol{\psi}^{s}}{\boldsymbol{\psi}^{\theta}}
$$

Initial guess for P^{1} by looking at V_{h}^{1} characterization and local exactness

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
V_{h}^{1}=\left\{\psi=\boldsymbol{\Lambda}^{1, T} \boldsymbol{\psi}=\binom{\left(\boldsymbol{\Lambda}^{1, s}\right)^{T} \boldsymbol{\psi}^{s}}{\left(\boldsymbol{\Lambda}^{1, \theta}\right)^{T} \boldsymbol{\psi}^{\theta}}: \begin{array}{l}
\psi_{0 j}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j} \\
\psi_{0 j}^{\theta}=0 \\
\psi_{1 j}^{\theta}=\psi_{0(j+1)}^{s}-\psi_{0 j}^{s}
\end{array}\right\} \text { with } \boldsymbol{\Lambda}^{1}=\binom{\boldsymbol{\Lambda}^{1, s}}{\boldsymbol{\Lambda}^{1, \theta}}, \boldsymbol{\psi}=\binom{\boldsymbol{\psi}^{s}}{\boldsymbol{\psi}^{\theta}}
$$

Initial guess for P^{1} by looking at V_{h}^{1} characterization and local exactness

$$
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\boldsymbol{R}_{j} & P^{1} \Lambda_{0 j}^{1, \theta}=Q_{0 j}, \\ P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=Q_{1 j}, \\ P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2 . & \end{cases}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$V_{h}^{1}=\left\{\psi=\boldsymbol{\Lambda}^{1, T} \psi=\binom{\left(\boldsymbol{\Lambda}^{1, s}\right)^{T} \psi^{s}}{\left(\boldsymbol{\Lambda}^{1, \theta}\right)^{T} \psi^{\theta}}: \begin{array}{l}\psi_{0 \mathrm{j}}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j} \\ \psi_{0 j}^{g}=0 \\ \psi_{1 j}^{g}=\psi_{0(+1)}^{s}-\psi_{0 j}^{s}\end{array}\right\}$ with $\boldsymbol{\Lambda}^{1}=\binom{\boldsymbol{\Lambda}^{1, s}}{\boldsymbol{\Lambda}^{1, \theta}}, \psi=\binom{\psi^{s}}{\psi^{\theta}}$
Initial guess for P^{1} by looking at V_{h}^{1} characterization and local exactness

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } } & { P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + \boldsymbol { R } _ { j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 0 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . } & { \frac { \text { commuting property } } { \text { projection property } } }
\end{array} \left\{\begin{array}{l}
\gamma=1 \text { in } P^{0} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} R_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$V_{h}^{1}=\left\{\psi=\boldsymbol{\Lambda}^{1, T} \psi=\binom{\left(\boldsymbol{\Lambda}^{1, s}\right)^{T} \psi^{s}}{\left(\boldsymbol{\Lambda}^{1, \theta}\right)^{T} \psi^{\theta}}: \begin{array}{l}\psi_{0 \mathrm{j}}^{s}=\lambda_{1} \cos \theta_{j}+\lambda_{2} \sin \theta_{j} \\ \psi_{0 j}^{g}=0 \\ \psi_{1 j}^{g}=\psi_{0(+1)}^{s}-\psi_{0 j}^{s}\end{array}\right\}$ with $\boldsymbol{\Lambda}^{1}=\binom{\boldsymbol{\Lambda}^{1, s}}{\boldsymbol{\Lambda}^{1, \theta}}, \psi=\binom{\psi^{s}}{\psi^{\theta}}$
Initial guess for P^{1} by looking at V_{h}^{1} characterization and local exactness

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } } & { P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + \boldsymbol { R } _ { j } } \\
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 0 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . } & { \frac { \text { commuting property } } { \text { projection property } } }
\end{array} \left\{\begin{array}{l}
\gamma=1 \text { in } P^{0} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} R_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
V_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{aligned}
& \quad V_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
& P^{2} \Lambda_{i j}^{2}= \begin{cases}0 & i=0 \\
\Lambda_{i j}^{2} & i \geq 1\end{cases}
\end{aligned}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{gathered}
V_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, \boldsymbol{T}} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
P^{2} \Lambda_{i j}^{2}=\left\{\begin{array}{ll}
0 & i=0 \\
\Lambda_{i j}^{2} & i \geq 1
\end{array} \xrightarrow{\text { curl } \boldsymbol{R}_{j}=0}\right.
\end{gathered}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{gathered}
V_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ 0 } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=0 \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{s}, s}-\boldsymbol{R}_{j} \\
\Lambda_{1 j}^{1, s}
\end{array} \Rightarrow P^{1} \text { global } \bigodot\right.\right.
\end{gathered}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{gathered}
V_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ 0 } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\begin{array}{l}
\text { curl } \boldsymbol{R}_{j}=0
\end{array} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{0}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{0}-1} \Lambda_{1 j}^{1, s}
\end{array} \Rightarrow P^{1} \text { global } \because\right.\right. \\
P^{2} \Lambda_{i j}^{2}= \begin{cases}\Lambda_{1 j}^{2} & i=0 \\
\Lambda_{i j}^{2} & i \geq 1\end{cases}
\end{gathered}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{aligned}
& \boldsymbol{V}_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
& \text { curl } R_{j}=0 \\
& P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ 0 } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1, j}^{1, s}-\boldsymbol{R}_{j} \Rightarrow P^{1} \text { global } \bigodot \\
\hline
\end{array}\right.\right. \\
& \sum_{j=0}^{n_{\theta}-1} R_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1, j}^{1, s} \\
& \operatorname{curl} \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
& P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ \Lambda _ { 1 j } ^ { 2 } } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1, j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
\end{aligned}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

$$
\begin{aligned}
& \boldsymbol{V}_{h}^{2}=\left\{\eta=\boldsymbol{\Lambda}^{2, T} \boldsymbol{\eta}: \eta_{0 j}=0\right\} \\
& P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ 0 } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\text { curl } \boldsymbol{R}_{j}=0 \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{g}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1,5}^{1, s}
\end{array} \Rightarrow P^{1}\right.\right. \text { global } \\
& \operatorname{curl} \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
& P^{2} \Lambda_{i j}^{2}=\left\{\begin{array} { l l }
{ \Lambda _ { 1 j } ^ { 2 } } & { i = 0 } \\
{ \Lambda _ { i j } ^ { 2 } } & { i \geq 1 }
\end{array} \xrightarrow { \text { commuting property } } \left\{\begin{array}{l}
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
\end{aligned}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + \boldsymbol { R } _ { j } } & { P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 0 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \boldsymbol { Q } _ { 1 j } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . }
\end{array} \quad \left\{\begin{array}{l}
\text { curl } \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\boldsymbol{R}_{j} & P^{1} \Lambda_{0 j}^{1, \theta}=\boldsymbol{Q}_{0 j} \\ P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j} \\ P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2\end{cases}
$$

Constraints

$$
\left\{\begin{array}{l}
\operatorname{curl} \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

$$
\begin{array}{ll}
\text { Projector } P^{1} & \text { Constraints } \\
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\boldsymbol{R}_{j} & P^{1} \Lambda_{0 j}^{1, \theta}=\mathbf{0}, \\
P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j}, \\
P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2 .\end{cases} & \left\{\begin{array}{l}
\text { curl } \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
n_{\theta}-1 \\
\sum_{j=0}^{\boldsymbol{R}_{j}}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.
\end{array}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

$$
\begin{array}{ll}
\text { Projector } P^{1} & \text { Constraints } \\
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\boldsymbol{R}_{j} & P^{1} \Lambda_{0 j}^{1, \theta}=\mathbf{0}, \\
P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=\boldsymbol{Q}_{1 j}, \\
P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2 .\end{cases} & \left\{\begin{array}{l}
\operatorname{curl} \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
n_{\theta}-1 \\
\sum_{j=0}^{\boldsymbol{R}_{j}}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.
\end{array}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

$$
\begin{array}{ll}
\text { Projector } P^{1} & \text { Constraints } \\
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\boldsymbol{R}_{j} & P^{1} \Lambda_{0 j}^{1, \theta}=\mathbf{0}, \\
P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=\mathbf{0}, \\
P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2 .\end{cases} & \left\{\begin{array}{l}
\text { curl } \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\boldsymbol{Q}_{1(j-1)}-\boldsymbol{Q}_{j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
n_{\theta}-1 \\
\sum_{j=0}^{n_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}}
\end{array}\right.
\end{array}
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + R _ { j } } & { P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . }
\end{array} \quad \left\{\begin{array}{l}
\operatorname{curl} R_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
Q_{1(j-1)}-Q_{1 j}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + \boldsymbol { R } _ { j } } & { P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . }
\end{array} \quad \left\{\begin{array}{c}
\text { curl } \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
\mathbf{0}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\left\{\begin{array} { l l }
{ P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , s } = \operatorname { g r a d } P ^ { 0 } \Lambda _ { 1 j } ^ { 0 } + \boldsymbol { R } _ { j } } & { P ^ { 1 } \Lambda _ { 0 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , s } = \Lambda _ { i j } ^ { 1 , s } \text { for } i \geq 1 } & { P ^ { 1 } \Lambda _ { 1 j } ^ { 1 , \theta } = \mathbf { 0 } , } \\
{ P ^ { 1 } \Lambda _ { i j } ^ { 1 , \theta } = \Lambda _ { i j } ^ { 1 , \theta } \text { for } i \geq 2 . }
\end{array} \quad \left\{\begin{array}{c}
\text { curl } \boldsymbol{R}_{j}=\operatorname{curl} \Lambda_{1 j}^{1, s} \\
0=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{j} \\
\sum_{j=0}^{n_{\theta}-1} R_{j}=\sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, s}
\end{array}\right.\right.
$$

CONGA Projectors P^{1}, P^{2} for the C^{1} sequence

We still have to determine $P^{1} \ldots$

Projector P^{1}

$$
\begin{cases}P^{1} \Lambda_{0 j}^{1, s}=\operatorname{grad} P^{0} \Lambda_{1 j}^{0}+\Lambda_{1 j}^{1, s} & P^{1} \Lambda_{0 j}^{1, \theta}=\mathbf{0} \\ P^{1} \Lambda_{i j}^{1, s}=\Lambda_{i j}^{1, s} \text { for } i \geq 1 & P^{1} \Lambda_{1 j}^{1, \theta}=\mathbf{0} \\ P^{1} \Lambda_{i j}^{1, \theta}=\Lambda_{i j}^{1, \theta} \text { for } i \geq 2 & \end{cases}
$$

Constraints

$$
\left\{\begin{aligned}
& \text { curl } R_{j}= \text { curl } \Lambda_{1 j}^{1, s} \\
& \mathbf{0}=\Lambda_{1 j}^{1, s}-\boldsymbol{R}_{\boldsymbol{j}} \\
& \sum_{j=0}^{n_{\theta}-1} \boldsymbol{R}_{j}= \sum_{j=0}^{n_{\theta}-1} \Lambda_{1 j}^{1, \mathrm{~s}}
\end{aligned}\right.
$$

C^{0} CONGA Projectors: Matrix Form

$\mathbb{P}^{0}, \mathbb{P}^{1}, \mathbb{P}^{2}$ sparse matrices with the following structure:

where $\boldsymbol{\boldsymbol { d }}=\left[\begin{array}{cccc}-1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1 \\ 1 & & & -1\end{array}\right]$
and $\mathbf{1}$ is the matrix full of 1 's (both of size $n_{\theta} \times n_{\theta}$)

C^{1} CONGA Projectors: Matrix Form

$\mathbb{P}^{0}, \mathbb{P}^{1}, \mathbb{P}^{2}$ sparse matrices with the following structure:

$\mathbb{P}^{0}=$| $\frac{1}{n_{\theta}} \mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :---: | :---: | :---: |
| $\frac{1}{n_{\theta}} \mathbf{1}$ | \boldsymbol{p} | |
| $\mathbf{0}$ | | |

where \boldsymbol{p} is a Toeplitz matrix with $\boldsymbol{p}_{\ell, k}=\frac{2}{n_{\theta}} \cos \left(\theta_{\ell}-\theta_{k}\right)$ for $\ell, k=0, \ldots, n_{\theta}-1$

Outline

Motivation

"logical" vs "physical" field spaces

Projection-based approach: a different perspective

Characterizing the pre-polar spline spaces

Computing the conforming projections
Numerical validation in Psydac

Summary

Numerical validation in Psydac

Leonardo da Vinci, prototype design (ca 1490)

Reminder: CONGA (projection-based) Poisson solver

- Model and conforming discretization:

$$
\left\{\begin{array}{rl}
-\Delta \phi=f & \text { in } \Omega \\
\phi=0 & \text { on } \partial \Omega,
\end{array} \quad \rightsquigarrow \quad \mathbb{S}_{p} \phi_{p}=\mathbf{f}_{p}\right.
$$

with $\left(\mathbb{S}_{p}\right)_{a, b}=\int_{\Omega} \nabla \Lambda_{a}^{0, p} \cdot \nabla \Lambda_{a}^{0, p} \mathrm{~d} x \mathrm{~d} y$ the stiffness matrix in the polar spline basis.

- CONGA discretization:

$$
\left(\alpha\left(\mathbb{I}-\mathbb{P}^{0}\right)^{T} \mathbb{M}\left(\mathbb{I}-\mathbb{P}^{0}\right)+\left(\mathbb{P}^{0}\right)^{T} \mathbb{S P}^{0}\right) \phi=\left(\mathbb{P}^{0}\right)^{T} \mathbf{f}
$$

with $\alpha>0$ and
$\left\{\begin{array}{l}\mathbb{M}^{0}, \mathbb{S} \text { : the mass and stiffness matrices in the full spline basis. } \\ \mathbb{P}^{0}: \text { the projection matrix onto the polar splines, in the full spline basis. }\end{array}\right.$

Reminder: CONGA (projection-based) Maxwell solver

- Model and conforming discretization:

$$
\left\{\begin{array} { r l }
{ \partial _ { t } B + \operatorname { c u r l } \boldsymbol { E } } & { = 0 , } \\
{ \frac { 1 } { c ^ { 2 } } \partial _ { t } \boldsymbol { E } - \text { curl } B } & { = 0 , }
\end{array} \quad \rightsquigarrow \quad \left\{\begin{array}{r}
\partial_{t} \mathbf{B}_{p}+\mathbb{C}_{p} \mathbf{E}_{p}=0 \\
\partial_{t} \mathbb{M}_{p}^{1} \mathbf{E}_{p}-\mathbb{C}_{p}^{T} \mathbb{M}_{p}^{2} \mathbf{B}_{p}=0
\end{array}\right.\right.
$$

with curl and mass matrices in the polar spline basis.

- CONGA discretization:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{B}+\mathbb{C} \mathbb{P}^{1} \mathbf{E} & =0 \\
\partial_{t} \tilde{\mathbb{M}}^{1} \mathbf{E}-\left(\mathbb{C P}^{1}\right)^{T} \tilde{\mathbb{M}}^{2} \mathbf{B} & =0
\end{aligned}\right.
$$

with curl and (regularized) mass matrices in the full spline basis

- Note: § the mass matrices must be regularized because $W_{h}^{1}, W_{h}^{2} \not \subset L^{2}(\Omega)$.

$$
\text { We set: } \quad \quad \tilde{\mathbb{M}}^{\ell}:=\frac{1}{n_{s} n_{\theta}}\left(\mathbb{I}-\mathbb{P}^{\ell}\right)^{T}\left(\mathbb{I}-\mathbb{P}^{\ell}\right)+\left(\mathbb{P}^{\ell}\right)^{T} \mathbb{M}^{\ell} \mathbb{P}^{\ell}
$$

Poisson Problem on a Polar Domain

Homogeneous Poisson problem:

$$
\left\{\begin{aligned}
-\Delta \phi & =f & & \Omega \\
\phi & =0 & & \partial \Omega
\end{aligned}\right.
$$

ϕ manufactured solution shown on the left.

Poisson Problem on a Polar Domain

Homogeneous Poisson problem:

$$
\left\{\begin{aligned}
-\Delta \phi & =f & & \Omega \\
\phi & =0 & & \partial \Omega
\end{aligned}\right.
$$

ϕ manufactured solution shown on the left.
Discretization with degree $p^{s}, p^{\theta}=2,3,4$

Poisson Problem on a Polar Domain

Homogeneous Poisson problem:

$$
\left\{\begin{aligned}
-\Delta \phi & =f & & \Omega \\
\phi & =0 & & \partial \Omega
\end{aligned}\right.
$$

ϕ manufactured solution shown on the left.
Discretization with degree $p^{s}, p^{\theta}=2,3,4$

Same (optimal) order of the conforming (polar) discretization

Poisson Problem on a Polar Domain

Homogeneous Poisson problem:

$$
\left\{\begin{aligned}
-\Delta \phi & =f & & \Omega \\
\phi & =0 & & \partial \Omega
\end{aligned}\right.
$$

ϕ manufactured solution shown on the left.
Discretization with degree $p^{s}, p^{\theta}=2,3,4$

Same (optimal) order of the conforming (polar)
discretization

Maxwell Problem on a Polar Domain

TD Maxwell problem:

$$
\left\{\begin{array}{l}
\partial_{t} B+\operatorname{curl} E=0, \\
\frac{1}{c^{2}} \partial_{t} \boldsymbol{E}-\operatorname{curl} B=0,
\end{array}\right.
$$

\boldsymbol{E}, B : Fourier-Bessel eigenmode, shown on the left.

Maxwell Problem on a Polar Domain

TD Maxwell problem:

$$
\left\{\begin{array}{l}
\partial_{t} B+\operatorname{curl} \boldsymbol{E}=0, \\
\frac{1}{c^{2}} \partial_{t} \boldsymbol{E}-\operatorname{curl} B=0,
\end{array}\right.
$$

\boldsymbol{E}, B : Fourier-Bessel eigenmode, shown on the left.
Discretization with degree $p^{s}, p^{\theta}=2,3,4$

Maxwell Problem on a Polar Domain

TD Maxwell problem:

$$
\left\{\begin{array}{l}
\partial_{t} B+\operatorname{curl} \boldsymbol{E}=0, \\
\frac{1}{c^{2}} \partial_{t} \boldsymbol{E}-\text { curl } B=0,
\end{array}\right.
$$

\boldsymbol{E}, B : Fourier-Bessel eigenmode, shown on the left.
Discretization with degree $p^{s}, p^{\theta}=2,3,4$

Optimal order of convergence is observed

Maxwell Problem on a Polar Domain

Cuts along $\theta=0$ (with C^{0} vs. C^{1} projections)

Outline

Motivation

"logical" vs "physical" field spaces

Projection-based approach: a different perspective

Characterizing the pre-polar spline spaces

Computing the conforming projections

Numerical validation in Psydac
Summary

Summary

- Poisson equation: $\left(\alpha\left(\mathbb{I}-\mathbb{P}^{0}\right)^{T} \mathbb{M}^{0}\left(\mathbb{I}-\mathbb{P}^{0}\right)+\left(\mathbb{P}^{0}\right)^{T} \mathbb{S P}^{0}\right) \phi=\left(\mathbb{P}^{0}\right)^{T} \mathbf{f}$
- Maxwell equations: $\partial_{t} \mathbf{B}+\mathbb{C} \mathbb{P}^{1} \mathbf{E}=0, \partial_{t} \tilde{\mathbb{M}}^{1} \mathbf{E}-\left(\mathbb{C P}^{1}\right)^{T} \tilde{\mathbb{M}}^{2} \mathbf{B}=0$
- \mathbb{C}, \mathbb{S} : usual curl and stiffness matrices, $\mathbb{M}^{0}, \tilde{\mathbb{M}}^{1}, \tilde{\mathbb{M}}^{2}$: (regularized) mass matrices
- projection matrices:

$\mathbb{P}^{2}=$| 0 | 0 |
| :--- | :--- |
| 1 | 1 |
| 0 | |

[^0]: ${ }^{1}$ Kraus-Kormann-Morrison-Sonnendrücker ('17), CP-Kormann-Sonnendrücker ('21)

