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Introduction

The focus of this work is on the excitation of Alfvén eigenmodes observed in
electron-cyclotron-heated plasmas in the Wendelstein 7-X stellarator.

Alfvénic modes:
• are a key consideration in the design of fusion devices
• can be excited by energetic particles (NBI, ICRH or fusion-born alphas)
→ resonant wave-particle interaction (well-understood)
→ “energetic-particle drive” paradigm

• act on larger scales and can lead to a redistribution of energetic particles
• may affect heating efficacy and can cause particle losses (1st wall damages)
• can mitigate turbulence through zonal-flow excitation
• have become subject to multi-scale studies

J . R I E M A N N ( I P P ) J U LY 3 , 2 0 2 4 E XC I TAT I O N O F A L F V É N I C M O D E S V I A E L E C T R O M AG N E T I C T U R B U L E N C E I N W E N D E LST E I N 7 - X 3



Introduction

Alfvénic modes persisting throughout entire discharges are observed in nearly all
experimental programs conducted on Wendelstein 7-X.†

• applies also to discharges without energetic particles
• even if present, “energetic-particle drive” could be ruled out by simulations ††
• similar observations were also made at other fusion experiments
• an alternative driving mechanism (wave-wave) had to be identified
• interaction with turbulence suggested - not yet substantiated by numerical model

This work proposes coupling between electromagnetic ITG turbulence and
Alfvénic modes as an explanation for their excitation in Wendelstein 7-X.
Results from extensive gyrokinetic simulations support this hypothesis and
are in the same frequency and mode number range as found experimentally.
† S. V. Mendes et al., Nuclear Fusion 63 (2023), †† C. Slaby et al., Nuclear Fusion 60 (2020)
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Experimental Results (I)

• 477 experimental W7-X programs analyzed †
• magnetic fluctuations measured by Mirnov coils
• broad spectrum of magnetic fluctuations Ḃθ

• frequencies scale with Alfvén frequency

experimental program #20181011.010 :
• dominant frequency band between 150-200 kHz
• subdominant frequency band for 220-250 kHz
• frequency peaks at f ≈170 kHz and f ≈225 kHz
• single modes identified with SSI method ††
• most probable poloidal mode numbers:

m = 2 (166 kHz), m = −2 (170 kHz), m = 3 (178 kHz)

†Mendes et al., NF 63 (2023), ††SSI = stochastic system identification
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Experimental Results (II)
• predominant ITG turbulence observed in W7-X
• turbulent density fluctuations measured with PCI†

diagnostic signal:
∫

ñedl
/ ∫

nedl
• dominant frequency band (DFB) tracked in time

using a special algorithm
• temporal evolution of turbulence (PCI signal)

and magnetic fluctuations Ḃθ (Mirnov signal)
is found very similar over entire discharge

• Alfvénic fluctuation amplitudes and
turbulence level are correlated

experimental findings suggest hypothesis:
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Alfvénic broad-band fluctuations in W7-X are driven by ITG turbulence.
†Phase Contrast Imaging in W7-X: J.-P. Bähner et al., Journ. Plasma Phys. 87 (2021)
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Numerical Simulation Setup

• numerical simulation model case was constructed to confirm this hypothesis
→ use global electromagnetic gyrokinetic particle-in-cell code EUTERPE †

• model case setup:
• pressure profile closely matching experimental program #20181011.010
• consistent 3D VMEC equilibrium for KJM configuration
• computational domain: annulus with 0.32 ≤ r/a ≤ 1.0
• Fourier modes up to k⊥ρi ≈ 0.67 considered
• extensive numerical simulation (≈ 106 CPU hours)

• modifying assumptions:
• Te = Ti for numerical simplicity and since predominant ITG activity expected
• up-scaled (≈factor 6) temperature & down-scaled density but pressure maintained

to keep resolution and computational cost low (shift of mode activity)
⇒ frequencies scale as: fexp = fsim

√
Texp/Tsim

† R. Kleiber et al. Computer Physics Communications 295 (2024)
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Numerical Results - Time Traces
• most prominent modes shown
• early ITG (high-m) activity

high poloidal mode numbers m

• Zonal Flow & Alfvénic modes
when ITG has passed threshold

• growth rate cascade
γ1 : γ2 : γ3 = 1γ : 2γ : 3γ

2γ observed earlier with zonal flows via
energetic particles (“forced-driven” ZFs)†

NEW: 3γ yet to be explained theoretically!
• results suggest causal chain:

evolution of radially integrated Fourier Amplitudes of A∥

Alfvénic modes driven by ITG instabilities through nonlinear interaction
† Todo et al., Nucl. Fusion 50 (2010); Z. Qiu et al., Nucl. Fusion 57 (2017)
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Numerical Results - Spectrogram (Rescaled)

• fexp = fsim
√

Texp/Tsim
• frequencies & [m,n]-modes:

175 kHz → [±1,0] EAE
225 kHz → [−1,5] NAE
77 kHz → [−5,5], [−6,5] TAE
35 kHz → [−11,10]
50 kHz → [−11,?]

• different mode numbers found
- only one field period modelled

⇒ only one toroidal mode family
(n = 0,±5,±10, ...)

- experimental uncertainties?

DMUSIC spectrogram including poloidal modes with
|m| = 1, 5, 6, 11 & linear(!) continuous spectrum (CONTI)

Numerical results mainly align with experimental findings.
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Numerical Results - Poloidal Mode Structures
• electrostatic potential Φ
• triangular cross section of W7-X

close to Mirnov coil arrangement
• snapshots at different times

time labels d & e
• charactristic structures

- fine-scale remnants of ITG
- [−11,10]-mode structure
→ related to 10/11-resonance at r/a = 0.75

- zonal flow
- low-m structures

early (d) and late (e) nonlinear phase
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Summary

• Excitation of long-wavelength Alfvénic modes was observed in W7-X.
• Energetic particles and a “forced-driven” mechanism could be ruled out.
• Excitation of Alfvénic modes via electromagnetic ITG turbulence was suggested.

• Extensive nonlinear simulations were performed with EUTERPE.
• Remarkably good agreement with experimentally observed frequencies.
• Results allow new qualitative insight into complex excitation mechanism.

• Findings may open new perspectives for understanding of nonlinear phenomena.
• EUTERPE is a valuable tool for further collaborations with the experiment.

This work was carried out within the framework of the EUROfusion Consortium (Grant Agreement No 101052200 - EUROfusion).

All simulations were performed on MARCONI at CINECA HPC (Italy) using resources granted to projects TSVV13, TSVV10 and EUGY.
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The Driving Role of ITG Activity

The role of ITG activity was tested.

1. ITG modes included in Fourier filter
→ low-m modes follow ITG growth

2. ITG modes excluded from Fourier filter
→ now growth of low-m modes

ITG activity inculded

ITG activity suppressed
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Phase Space Diagnostics

• integrated energy transfer (j · E)
between particles and E-field

j · E > 0 : field −→ particle
j · E < 0 : field←− particle

• ions
characteristic footprint of toroidal ITG

• electrons
Landau-like resonance

• no trapping effects
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Time Traces: Electrostatic vs. Vector Potential

evolution of radially integrated Fourier Amplitudes
• A∥ : very clear signals
• Φ : fast fluctuations
• electrostatic vs. magnetic nature

of different modes visible
• different saturation behaviour
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Some Parameters
simulation:

• T∗ = 3.75 keV (T0 = 10 keV)
• n∗ = 6.12 ·1018 m−3 (n0 = 6.98 ·1018m−3)
• B∗ = 2.46 T
• v∗ = 5.99 ·104 m/s
• Ω∗ = 2.35 ·108 s−1

• ρi∗ = 2.55 ·10−3 m
• β = 8.6 ·10−4

radial reference position: s∗ = 0.5 (r∗/a = 0.71)

experiment:
• T0 ≈ 1.5 keV
• n0 ≈ 5 ·1019 m−3
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