

Electric fields and stationary drift flows in the island divertor SOL of Wendelstein 7-X

C Killer, D Cipciar, S Ballinger, SG Baek, A von Stechow, J Terry, O Grulke, W7-X Team

W7-X Physics Meeting, 17.06.2024

the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion) Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the

Summary / abstract

- 2D-resolved Langmuir probe measurements in the W7-X island divertor SOL uncover a complex spatial structure of T_e n_e, V_f.
 - significant poloidal gradients and non-monotonic radial profiles are observed, sensitively depending on the magnetic structure (island size and position)
 - 2D distribution of plasma parameters is intricately related to the magnetic structure and hints at limitations of the current magnetic field reconstruction accuracy
- resulting electric fields imply the presence of sheared stationary drift flows with poloidal velocities of a few km/s and typical structure sizes of down to 1 cm
 - such flows are observed with a gas puff imaging diagnostic in qualitative agreement with the probe results
 - these flows imply a significant transport channel in the SOL → highly relevant for SOL transport modeling
- physics behind the potential measurements not yet understood → implies that we are lacking a fundamental physics effect in the SOL

Introducing the island divertor scrape-off layer

- chain of intrinsic resonant magnetic islands at the plasma boundary
- modular divertor units intersect magnetic islands
- compared to tokamaks:
 - longer connection length (smaller pitch angle)
 - additional regions beyond main SOL and PFR: target shadow region, closed field line region in island center

diagnostic setup

- MPM and GPI are located in stellarator-symmetric cross sections
- introducing MPM probe head "IPP-FLUC2": poloidal-radial array of 29 pins, adjusted to flux surface geometry
- flexible operation modes
 (V_f, I_{i,sat}, triple probes, ...)

Constructing 2D maps of time-averaged quantities

2D (*R-z*) map of V_f is obtained from radial scan of the poloidal probe array

 (time averaged to time scales of the probe movement, ~ 10Hz)

2D structure of SOL plasma

- V_f map is highly structured
 - flux-surface aligned layers of positive → negative → positive V_f
- T_e, n_e profiles modulated by connection length
 - distinct T_e peak at target shadow boundary for upper profile
- V_f map implies electric fields
 - radial: $\sim kV/m \rightarrow v_{pol} \sim km/s$
 - poloidal: ~100V/m \rightarrow v_{rad} ~ 100m/s
 - multiple E_r shear layers
- these observations are roughly preserved when accounting for T_e contribution

 $E_r = -\nabla_r V_p = -\nabla_r (V_f + 2.8T_e)$

qualitative agreement on poloidal SOL flows between GPI and MPM

- both diagnostics observe sheared poloidal flows of km/s in the island SOL
 - typically factor 1.5 2 higher velocities in GPI
 - poloidal variation across FoV for both diagnostics
 - radial offset between shear layer positions, but direct mapping not simply possible – different islands, and non-overlapping FoV w.r.t island
 → we don't know if flows "close" around each island
- such flows have massive implications for SOL transport [Flom subm. to NF 2024]
 - flows are "efficient" due to small pitch angle
 → effectively boosting poloidal transport by 10³ compared to parallel transport
 - not included in current models (e.g. EMC3-EIRENE)

Remainder of the paper

- Half-time summary:
 - non-monotonic T_e, n_e, V_f profiles across magnetic islands
 - sheared stationary poloidal flows

- second half of the paper: survey across magnetic configuration space
 - small radial shift of island position (plasma current)
 - poloidal shift of island position (control coils)
 - magnetic field direction
 - other 5/5 island configurations: low shear (MMG), high mirror (KKM)
 - other island chains: low iota configuration (5/6, diagnostics closer to X point)

Wendelstein 7-X

radial shift of island position via plasma current

- plasma current evolution (bootstrap current) changes iota and therefore island position
 - positive V_f region is associated to island center
 - flat-top experiments with only I_p changing: both positive V_f and closed field line region grow (and radially move) with evolving current
 - E_r increases during I_p evolution → agreement with GPI [Ballinger 2024, in preparation]

poloidal shift of island position via control coils

- presence of negative bias voltage for I_{i,sat} probes affects V_f measurements when probe enters O point
 - positive V_f around O point (closed field lines) in case without bias voltage
 - negative V_f around O point region
 - size and position of negative V_f region scales in agreement with plasma current (→ island / O point position)
 - no effect of probe bias in cw shifted island case (entirely open field lines)
 - generally, the presence of bias voltage (almost) never matters → this is not a technical malfunction, but a true physics effect related to magnetic geometry.

poloidal flow velocities in island rotation case

here, GPI views a position that is equivalent to the MPM FoV in the "unshifted" case. Three shear layers in the space of 5cm!

- for "MPM probes O point" case, effect of bias voltage flips the E_r map
- the "bias off" case agrees better with GPI

magnetic field direction

- reversed field experiments ran at slightly higher iota (I_{pc,reversed}=500A vs I_{pc,forward}=250A), but that doesn't explain the different behavior
- we probably had a different (not well compensated) 1/1 (and 2/2) error field in reversed field experiments [Gao, Workshop 2023]
- apparently random flips of v_{pol} directions are also seen by GPI in reversed field experiments

magnetic field direction – comparison of MPM profiles

- position of T_e peaks depends on field direction (but TSR location doesn't)
- consistent profile shape for each field • direction

consistent profile shape for forward field •

6.08

R(m)

6.10

6.02

6.06

R (m)

Low shear, outward shifted configuration (MMG)

flux surface-aligned V_f map

- positive V_f around island center
- strong poloidal gradient on outer island separatrix)
- no relation to target shadow
 boundary → V_f is not dominantly
 set by sheath conditions

strong poloidal gradient of I_{sat}

- mostly due to T_e (~factor 5 higher at upper part of the FoV)
- I_{sat} distribution rather follows flux surfaces than connection length, but still strong gradients on flux surfaces

High Mirror configuration

- different island divertor interaction geometry, compared to standard
 - rather similar T_e profiles with clear T_e peak around TSR for all experiments
 - SOL density and in particular SOL density peak at TSR depends on P, n_{dl}
- Vf maps sensitive on P, n_{dl}
 - low P, n: mostly positive V_f with a negative V_f hole (highly reproducible!)
 - for higher P, n: transition to two distinct positive Vf regions: 1) around the island center, 2) around the TSR border, but only in the upper part of the FoV
 - drift flows change accordingly -

Low iota configuration

MPM FoV close to X point

- measurements entirely in private flux region (heat load limitations)
- V_f maps depend on plasma scenario (P,n) , less on I_p
 - rather uniform V_f distribution at higher SOL power density
 - towards lower SOL power densities, a single thin band of positive V_f remains (4cm deep into the PFR, outside of the island!)

-0.12

-0.16

-0.20

-0.24

z (m)

possible explanations

- localized radiation effects, known from this configuration [Winters NF 2024, Zhang xxx]
- beta effects [Knieps NF 2022, Killer ISHW 2022]

- complex 2D structure of steady state plasma parameters in the island divertor SOL
 - intricately entangled with (fine details of the) magnetic geometry
 - typical scale length of cm \rightarrow much smaller than island size

• V_f and T_e gradients imply complex ExB flow patterns

- such drift flows are observed in qualitative agreement with GPI
- these flows are a relevant SOL transport channel \rightarrow edge modeling

fundamental questions raised by the 2D plasma parameter distribution

- (0. it is important to measure these in the first place. We need spatially resolving diagnostics)
- V_f structure implies that we are missing physics. sheath effects? trapped particles and neoclassical physics might be relevant in the SOL?
- V_f measurements can serve as a tool to diagnose magnetic field structure (biasing of the entire closed field line region, only happening in reversed standard and forward with shifted islands)
 → tool to assess asymmetries / error fields / iota reconstruction