

Towards accurate and efficient mean-field plasma boundary simulations for DEMO with kinetic neutrals

Wim Van Uytven TSVV-5 code camp 21/11/2024 (EU-) DEMO

- At present, conceptual design phase
- Need to find possible operational space
 2GW fusion plasma ↔ acceptable divertor heat loads and temperatures
- \rightarrow need for plasma boundary simulations
- \rightarrow create database of SOLPS-ITER simulations

avoid discovering large numerical errors afterwards

B2.5-EIRENE coupling with fully kinetic neutrals

SOLPS-ITER outer iteration

Random Noise Averaging

- Found to be most efficient coupling strategy in PhD K. Ghoos
- No or limited number of inner B2.5 iterations
- Random seeds (vs. Correlated Sampling)
- No runtime-averaging of source terms (vs. Robbins Monro)
- Run to statistical steady state
- Then start averaging plasma state

Numerical errors in plasma boundary codes

$\epsilon_{num} = \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{b} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{c} + \epsilon_{s}$ $= \int_{a}^{b} \epsilon_{d} + \epsilon_{s}$

direct result of noisy MC sources deterministic error due to noise + non-linearities non-zero residuals finite grid resolution

Error scaling:

- $\epsilon_{\rm s}$: $\propto 1/\sqrt{P}$ during run, $\propto 1/\sqrt{P I}$ when averaging
- $\epsilon_{bc} = \epsilon_c + \epsilon_b \approx \frac{1}{p}$

Towards accurate and efficient DEMO simulations in SOLPS

- Goal: acceptable numerical errors for DEMO SOLPS cases (e.g. < 10%) as cheaply as possible
- Start from framework of PhD K. Ghoos
- But, some unanswered questions:
 - Q1: effect of Δt on bias?
 - Q2: effect of NNC on error scaling?
 - Q3: effect of impurities?

Neutral-neutral collisions

- Only plasma-neutral interactions considered in PhD K. Ghoos
- Present-day EIRENE simulations include NNCs
- BGK approximation: collision background is Maxwellian (from previous iteration)

SOLPS-ITER outer iteration

Effect of Δt

- Δt determines how much plasma will adapt to noisy MC sources in 1 iteration
- Small Δt is expected to act as a filter
- [M. Baeten et al., CtPP, 2018]: statistical error scales with $\sqrt{\Delta t}$ (0D+1D cases)
- Effect of Δt on bias not studied in PhD K. Ghoos for 2D SOLPS

9

D-only: scan on P and Δt

	P =	760	7.6k	76k	760k	
without NNC	$\Delta t = 1^{e}-4 \text{ s}$					
	$\Delta t = 1^{e}-5 s$					
	$\Delta t = 1^{e}-6 s$					
	$\Delta t = 1^{e}-7 \text{ s}$					

P =	760	7.6k	76k	760k
$\Delta t = 1^{e}-4 s$				
$\Delta t = 1^{e}-5 s$				
$\Delta t = 1^{e}-6 s$				
$\Delta t = 1^{e}-7 s$				

Location	Poriginal				
Inner target	25000				
Outer target	25000				
Inner PFR	2000				
Outer PFR	2000				
MCW	2000				
Vol. Rec.	10000				
Gas puff	10000				

Q1: effect of Δt on bias? Q2: effect of NNC on error scaling?

with NNC

Only 1^e-4s and 1^e-5s for P/100 lead to a qualitatively wrong solution

 \rightarrow no noticeable effect of NNCs on convergence behavior

 \rightarrow bias decreases monotinically with Δt

Choice for number of impurity MC particles

Impurity neutrals \approx 1 order of magnitude smaller CPU time/particle than D/D₂

 \rightarrow Chose similar CPU time per stratum for impurities

Location	D
Inner target	25000
Outer target	25000
Inner PFR	2000
Outer PFR	2000
MCW	2000
Vol. Rec.	10000
Gas puff	10000

Location	D	Не	Ar
Inner target	25000	250000	250000
Outer target	25000	250000	250000
Inner PFR	2000	20000	20000
Outer PFR	2000	20000	20000
MCW	2000	20000	20000
Vol. Rec.	10000	100000	100000
Gas puff	10000	/	100000

Scans on D+He+Ar cases

With NNCs

Without NNCs

	P =	130k	1.3M	13M	P =	130k	1.3M	13M
	$\Delta t = 1^{e}-4 \text{ s}$				$\Delta t = 1^{e}$ -4 s			
\r nuff	$\Delta t = 1^{e}-5 s$				$\Delta t = 1^{e}-5 s$			
l ^e 19 /s	$\Delta t = 1^{e}-6 s$				$\Delta t = 1^{e}-6 s$			
	$\Delta t = 1^{e}-7 \text{ s}$				$\Delta t = 1^{e}-7 s$			

	P =	130k	1.3M	13M	P =	130k	1.3M	13M
Ar puff	$\Delta t = 1^{e}-4 \text{ s}$				$\Delta t = 1^{e}$ -4 s			
1º20/s	$\Delta t = 1^{e}-5 s$				$\Delta t = 1^{\text{e}}-5 \text{ s}$			
	$\Delta t = 1^{e}-6 s$				$\Delta t = 1^{e}-6 s$			
	$\Delta t = 1^{e}-7 \text{ s}$				$\Delta t = 1^{e}-7 s$			

	<i>P</i> /10	Р	<i>P</i> x10
$\Delta t = 1^{-4} s$			
$\Delta t = 1^{-5} s$			
$\Delta t = 1^{-6} s$			
$\Delta t = 1^{-7} s$			

	P/10	Р	<i>P</i> x10
$\Delta t = 1^{-4} s$			
$\Delta t = 1^{-5} s$			
$\Delta t = 1^{-6} s$			
$\Delta t = 1^{-7} s$			

	<i>P</i> /10	Р	Px10
$\Delta t = 1^{-4} s$			
$\Delta t = 1^{-5} s$			
$\Delta t = 1^{-6} s$			
$\Delta t = 1^{-7} s$			

Prelim. conclusions D + He + Ar cases

- Multi-species cases appear to have much larger bias than D-only case
- Why?
 - Purely case dependent? E.g. much higher core power? higher T's OT?
 - Bad statistics from impurity neutrals themselves?
 - Combination of both?

Experiment: multiply only impurities again x10

60

60

20

IT: bias decreases but not /10

OT: solution collapses onto P and Px10 \rightarrow bias originated from impurities themselves

Similar observations in literature

Non-local effect of saturated residuals in B2-EIRENE (SOLPS) simulations September 22, 2016 Vladislav Kotov

presentation linked to

Kotov, Vladislav. "Particle conservation in numerical models of the tokamak plasma edge." *Physics of Plasmas* 24.4 (2017).

Similar observations in literature

- PhD N. Rivals + communications at PSI
 - In SOLEDGE3X, very strict time-step limitations found for ITER D + Ne + He cases
 - Much less issues for D-only

Similar observations in literature

• Own spatially hybrid results (= multi-species case with fluid ions and fluid neutrals)

Conclusions

- Error reduction w.r.t. P and Δt does not change significantly with NNCs
- Decrease of bias for smaller Δt demonstrated in SOLPS-ITER
 - useful knowledge if Δt is limited by plasma side (e.g. drifts)
- Bias error seems to be much higher for (high-power?) multi-species cases
 - Similar observations in literature
 - Need to better understand why
 - Optimal strategies for D-only may no longer be optimal
 - \rightarrow high priority for future research
 - \rightarrow back to 1D or slab cases? DEMO cases much too slow for efficient research

Back-up

D-only results: effect of NNC

- Noticeable effect
- Same regime

D+He+Ar: effect of NNC

Q3: how to set P_{imp} vs P_D ?

	D/D ₂	Не	Ar
Source [s ⁻¹]	$1,56 \cdot 10^{25}$	$1,16 \cdot 10^{23}$	$1,19 \cdot 10^{22}$
CPUt / P [µs]	735,6	71,9	35,4

- physical flux is 2-3 orders of magnitude smaller for impurities, but large effect on energy balance
- impurities are \pm 1 order of magnitude faster per MC particle
- → nothing to gain by setting $P_{imp} < P_D$ → either $P_{imp} \approx P_D$ or $P_{imp} > P_D$

Q3: how to set P_{imp} vs P_D ?

- Choose a Δt and P_D that gave low error for D-only
- Check with $P_{imp} = \frac{P_D}{10}$, $P_{imp} = P_D$, and $P_{imp} = P_D \cdot 10$
- No results yet

Run with $\Delta t = 10^{-4}s$ starting from $\Delta t = 10^{-6}s$ solution

Run with $\Delta t = 10^{-6}s$ starting from $\Delta t = 10^{-4}s$ solution

Results D-only

Will show scalar results to reduce figures: ion density and ion temperature at ISP, OSP, and crossing of OMP and separatrix

Results D-only

w.o. NNC

- Error decreases with P ↑
- Error decreases with $\Delta t \downarrow$
- Different Δt 's converge to different solution for $P \rightarrow \infty$??

Results D-only

- Error decreases with P ↑
- Error decreases with $\Delta t \downarrow$
- Different Δt 's converge to different solution for $P \rightarrow \infty$??

D-only results

• Error scaling if we assume that Px10 is exact solution, for each Δt separately

Impurity seeding

- ITER and DEMO will rely heavily on seeded impurities
- e.g. Neon, Argon
- Cause radiative cooling of plasma
- Balance between cooling of edge and contamination of core

D-only results

• Error scaling if we assume that $\Delta t = 10^{-7}$ is exact solution, for each *P* separately

B2.5-EIRENE coupling

• Residuals and plasma time traces stagnate to statistical steady state

Error in EIRENE (e.g. source rescaling)?

 Compared 1 EIRENE call with 130M particles to average of 13k over 10k iterations on fixed plasma BG

 \rightarrow seems OK

