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: : Special Note to W7-X team:
First experime

island geomet| If desired, please send me your W7-X-related

detachment in oral/poster number, which | can add to the final slide of
my talk.

| could not find these on the conference website.

Thanks!
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Wendelstein 7-X — Overview

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs

 Coil system designed for high magnetic flexibility:
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Machine Parameters

R =55m

a ~0.5m

Prcry < 10 MW (30min)
Pygr < 6 MW (8s)
Byis =25-26T
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Wendelstein

Wendelstein 7-X — Overview

N

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs

 Coil system designed for high magnetic flexibility:

* 50 Nonplanar coils — main field
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Wendelstein 7-X — Overview

-

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs

 Coil system designed for high magnetic flexibility:

* 50 Nonplanar coils — main field

20 Planar coils — changes ¢ and its profile
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Wendelstein 7-X — Overview

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs
 Coil system designed for high magnetic flexibility:

* 50 Nonplanar coils — main field

20 Planar coils — changes ¢ and its profile

« 10 Control coils — used to sweep plasma strike line (or to
change edge island size)

Wendelstein
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Machine Parameters
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Wendelstein

Wendelstein 7-X — Overview AN

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs // ) } '_V\gl —

 Coil system designed for high magnetic flexibility: =, AR M-
« 50 Nonplanar coils — main field L7 , ' :
« 20 Planar coils — changes ¢ and its profile (/ /ﬁ

« 10 Control coils — used to sweep plasma strike line (or to
change edge island size)

» Designed to operate up to 30 mins, so far = 8 min plasmas
achieved (Kubkowska 1.223 — Thurs.)

Machine Parameters
R =55m
a ~0.5m
Prcry < 10 MW (30min)
Pygr < 6 MW (8s)
Byis =25-26T
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Wendelstein 7-X — Overview

» 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs
 Coil system designed for high magnetic flexibility:

* 50 Nonplanar coils — main field

20 Planar coils — changes ¢ and its profile

« 10 Control coils — used to sweep plasma strike line (or to
change edge island size)

» Designed to operate up to 30 mins, so far = 8 min plasmas

achieved (Kubkowska 1.223 — Thurs.)

W7-X utilizes the island divertor concept.
What does this look like?

Wendelstein
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Machine Parameters
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Wendelstein

What does the SOL geometry look like for the island divertor? N
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What does the SOL geometry look like for the island divertor? N

Standard Confiquration (5 islands)
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Wendelstein

What does the SOL geometry look like for the island divertor? N

Standard Confiquration (5 islands)

Shadowed by other
targets

The details of this geometry depend on the magnetic field Island

configuration! separatrix
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Wendelstein

Island geometry believed to play a critical role in SOL transport |

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

ulk Plasma

222

Konig et al, Plasma Phys. Control. Fusion 44 (2002)

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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« Simplified models indicate that ratio of ||- to L-
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Island geometry believed to play a critical role in SOL transport

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line

Wendelstein

pitch, ©, within the islandl:

'b
an x 02 0 =2g U'Drm
q. Rm

ulk Plasma

222

Konig et al, Plasma Phys. Control. Fusion 44 (2002)

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Wendelstein

Island geometry believed to play a critical role in SOL transport |

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

A g2 0 =2a

q.1 shear at resonant+] Rm
surface

rm

1

ulk Plasma

Konig et al, Plasma Phys. Control. Fusion 44 (2002)

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Wendelstein

Island geometry believed to play a critical role in SOL transport | Y

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

an

radial resonant field
x 0?2 0 =2a component
q. shear at resonant4] Rm

surface

1

ulk Plasma

Konig et al, Plasma Phys. Control. Fusion 44 (2002)

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Wendelstein

Island geometry believed to play a critical role in SOL transport | Y

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

radial resonant field
Qn x 02 0 =2q component
shear at resonant R)
U poloidal mode

surface .
number of islands

1

ulk Plasma

Konig et al, Plasma Phys. Control. Fusion 44 (2002)

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Island geometry believed to play a critical role in SOL transport

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

il

radial resonant field

— x P2 0 =2q component
q. shear at resonant 1@ oidal mod
surface poloidal mode

number of islands

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Where q/q; =1 Adapted from [1]
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—— 0O =0.001 (stellarator)
—— 0 = 0.1 (tokamak)
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Island geometry believed to play a critical role in SOL transport

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line
pitch, ©, within the islandl:

il

radial resonant field

— x P2 0 =2q component
q. shear at resonant @ oidal mod
surface poloidal mode
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Where q/q; =1 Adapted from [1]
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Tetectrons

l-transport much more important in
stellarators than tokamaks!

—— 0O =0.001 (stellarator)
—— 0 = 0.1 (tokamak)
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Wendelstein

Island geometry believed to play a critical role in SOL transport |

« Simplified models indicate that ratio of ||- to L-
transport is highly sensitive to the magnetic field line

Where q/q; =1 Adapted from [1]
pitch, ©, within the islandl:
radial resonant field
qQ x 0?2 0 =2q component
q. shear at resonant 1@ _ ]
surface poloidal mode | |
number of islands = T
2, 40" {electro™ : .
R L-transport much more important in
8 ] stellarators than tokamaks!
L
F: -
How do we test this sensitivity 0
. . 10 Fions
experimentally in W7-X? ]
] —— © =0.001 (stellarator)
Telectron® —— © = 0.1 (tokamak)
1018 1019 1020

Nsor [m™3]

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Wendelstein

Experimental flexibility in W7-X = Modification of field line pitch [# X

' by,

0O=2
¢ Rm
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Wendelstein

Experimental flexibility in W7-X 2 Modification of field line pitch | Y

Method 1: Modify shear and/or poloidal number of islands
,Standard”

5.0 5.5 6.0

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



Wendelstein

Experimental flexibility in W7-X 2 Modification of field line pitch | Y

Method 1: Modify shear and/or poloidal number of islands

,Standard” ,Low lota“

5.0 5.5 6.0 5.0 5.5 6.0
R [m] R [m]
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Wendelstein

Experimental flexibility in W7-X 2 Modification of field line pitch | Y

0 =2a @

Rm

Method 2: Radial resonant field component

,Standard”

5.0 5.5 6.0
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Wendelstein

Experimental flexibility in W7-X 2 Modification of field line pitch | Y

® = 2a @

Rm

Method 2: Radial resonant field component
,otandard” yotandard® with I, = —1 kA

Decreased\ia
\

\

5.0 5.5 6.0 5.0 5.5 6.0
R [m] R[m]
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Wendelstein

Experimental flexibility in W7-X = Modification of field line pitch £ X

0 =2a @

Rm

4 A

Both methods here are believed to increase the weight of
L-transport.

Do we see any effects experimentally?

\_ /

L . . | | . . . |
5.0 5.5 6.0 5.0 55 6.0
R [m] R[m]
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Wendelstein

Experimentally, we see fundamentally different radiation Y
behavior between standard and low iota configurations

,Standard® 20230209.30 ,Low lota“ 20230125.18
- PECRH

_'_Prad

00 2 4 6 8 10 12 14 16 00 2 4 6 8 10 12 14 16
Time [s] Time [s]
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Experimentally, we see fundamentally different radiation
behavior between standard and low iota configurations

,Standard®

20230209.30

-
.

1e20
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detachment

constant W,

Time [s]
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Wendelstein
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Wendelstein

Experimentally, we see fundamentally different radiation N W
behavior between standard and low iota configurations Further studies power exhaust >

F. Reimold (Invited, Friday)

,Standard® 20230209.30 ,Low lota“ 20230125.18
4 4 T —__p
i T ECRH

3] 3 o o

= v~ . rad

] |
2 gz j [
Hi o
0 0
1e20
Tomographic
reconstruction of 5 g
. t =5.8s
radiated power ‘/
distribution
OUF—
600
Z 400
§2oo-
04 \ : : : : - ol - : i : : : -
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Time [s] Time [s]
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Wendelstein

Tomographic reconstructions show differing radiated power N
distributions between standard and low i1ota

,otandard” P rad
o | 1054 | ~ 600, 0.58
20230209.30 @ 7.5S, frqq = 90% 20230125.18 @ 5.8s, frqqa = 60%

aq Distribution ,Low lota“ P, Distribution

10.27

= 36°

| | 0.01 ¢ =36°
Zhang et al, Nucl. Fusion 61 (2021)

| L L 1 | L I L L |

VBC (VBCI+VBCr)
(x33)
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Wendelstein

Tomographic reconstructions show differing radiated power N
distributions between standard and low i1ota

,otandard” P 4 Distribution ,Low lota“ P4 Distribution

rad

20230209.30 @ 7.55, fogg ~ 90% 0% 20230125.18 @ 5.85, frqq ~ 60% 0-58

Radiation . | : Radiation also
concentrated - 10.27 concentrated at
' O-point

0.01 ¢ =36°

near X-pointsl?

= 36°

Zhang et al, Nucl. Fusion 61 (2021)

| L L 1 | L I L L |

VBC (VBCI+VBCr)

[2] Y. Feng et al, Nucl. Fusion 61 (2021) (x33)
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EMC3-Eirene modeling of standard and low iota configurations

show qualitatively similar trends in radiation patterns

,otandard” P, Distribution (EMC3-Eirene)

rad

rad ~ 90%

lo = 36°

-101.

10°

,Low lota“ P, Distribution (EMC3-Eirene)

Wendelstein

~

frad ~ 60%

Radiation near
O-points

o =36°

Generally, Radiation in low iota configuration more concentrated on inboard side islands as

compared to standard (both experiment and modeling)

[V. R. Winters et al, Nucl. Fusion (submitted)]

-101

MW m

10°




Wendelstein

EMC3-Eirene modeling reveals that different radiation pattern i

Indeed arises from island geometry effects
» We use the ,standard” configuration to understand why O-point radiation increases in ,low iota“

 Jlow iota“ has a smaller © than ,standard” (increased weight L-transport)
IDrad
x. =10.0 m?2st

Distribution 1.. = 0.0 kA

* In simulation, 2 ways of increasing weight of L-transport:

1. Increase y, in the simulation . L0
) ) ) ) ) 'p s
2. Decrease internal island field line pitch: © = 2a ‘R;m N 0ol T
as\(\g x> 5.0 :
\0© R [m]

P..q Distribution I.. = 0.0 kA
7.5

Z [m]

5.1 5.2 5.3 5.4
R [m]

[V. R. Winters et al, Nucl. Fusion (submitted)]

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK | V. R. WINTERS | 09.07.2024

EPS 2024 | SALAMANCA, SP 9



Wendelstein

a

EMC3-Eirene modeling reveals that different radiation pattern

Indeed arises from island geometry effects
» We use the ,standard” configuration to understand why O-point radiation increases in ,low iota“

 Jlow iota“ has a smaller © than ,standard” (increased weight L-transport)

P, .4 Distribution 1., = 0.0 kA

« Two ways of increasing weight of L-transport:

1. Increase y, in the simulation

Z [m]

2. Decrease internal island field line pitch: 0 = 2a -

P..q Distribution 1., =
XL =0.75m?2s1

Z [m]

@ PPN, o
o vD L LT “twn

e,
//pr "‘\»..
52 53 54 55 56
R [m]

5.1 2.2

5.0

R [m] :
5.0 5.1
EPS 2024 | SALAMANCA, SP 9

[V. R. Winters et al, Nucl. Fusion (submitted)]
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Wendelstein

Using a simplified impurity model in EMC3-Eirene indicates N
radiation bifurcation in the low iota configuration

* No self-consistent solution in EMC3-Eirene exists
in ,low iota“ at f_,,=90%, using impurity transport

» Solutions do exist, however, if one replaces
impurity transport with a constant impurity
concentration

f@d

0 200 400 600 800

lteration
[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]
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Wendelstein

Using a simplified impurity model in EMC3-Eirene indicates N
radiation bifurcation in the low iota configuration

* No self-consistent solution in EMC3-Eirene exists

in ,low iota“ at f_,,=90%, using impurity transport 10— T —
C Y. Feng
» Solutions do exist, however, if one replaces ; |
impurity transport with a constant impurity 0.9 = »low iota F
concentration =k
C ,Standard”
 Radiation bifurcation observed in simplified ,low x reference
jota“ simulations :iv 0.8 — =
0.7 £ E
e . . oy
1.0 1.9 2.0 24

c-n%e(10°"mi®)

[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]
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Wendelstein

Using a simplified impurity model in EMC3-Eirene indicates N
radiation bifurcation in the low iota configuration

* No self-consistent solution in EMC3-Eirene exists

in ,low iota“ at f_,,=90%, using impurity transport 10— T ———)
C Y. Feng ]
» Solutions do exist, however, if one replaces - | ]
impurity transport with a constant impurity 09 E slow ota F
concentration T ]
C ,Standard” ]
- Radiation bifurcation observed in simplified ,low K reference Shot 1
jota” simulations :iv 0.8 \X-point =
 Results from shift of radiation location to X- :
point as it crosses the LCFS - :
0.7 F -

U . o w o 6 s s s . B o s s

1.0 1.9 2.0 240

c-n%e(10°"mi®)

[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]
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Wendelstein

Using a simplified impurity model in EMC3-Eirene indicates N
radiation bifurcation in the low iota configuration

* No self-consistent solution in EMC3-Eirene exists

in ,low iota” at f_,,=90%, using impurity transport 10— T —
C Y. Feng ]
» Solutions do exist, however, if one replaces - | ]
impurity transport with a constant impurity 09 E slow ota 3
concentration T "
C ,Standard” ]
» Radiation bifurcation observed in simplified ,low K reference omior
jota” simulations :is 0.8 \X-point -
« Results from shift of radiation location to X-
point as it crosses the LCFS - ]
0.7 F -
Possible cause of the radiation instability seen _
In experiment (verification pending) OB6F . . .

1.0 140 2,0 24

c-n%e(10°"mi®)

[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]
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Wendelstein

Is it possible to make detachment in low iota more stable? £

DBM ¢ = 10° Praqg

* One possible avenue is to increase the field line pitch

(increase weight of ||-transport) 1.0

3
N 0.9
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Is it possible to make detachment in low iota more stable?

* One possible avenue is to increase the field line pitch
(increase weight of ||-transport)

Wendelstein

~

DBM (0 - 100 Prad

1.0 1

[m]

N 0.9 1

0.8 . .
5.4 5.6
R [m]

5.0

Increase field line pitch using
our island control coils

5.4



Is it possible to make detachment in low iota more stable? £

* One possible avenue is to increase the field line pitch
(increase weight of ||-transport)

» Simulations still see radiation condensation
between X-points, but more distributed radiation
- still unstable?
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Is it possible to make detachment in low iota more stable? AR
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» One possible avenue is to increase the field line pitch o Pfng

(increase weight of ||-transport)

» Simulations still see radiation condensation
between X-points, but more distributed radiation
- still unstable?

- Different radiating species may lead to more stable £1.0;

radiation scenarios -
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* Neon radiates further upstream, and is more
evenly distributed in simulations

. - (NBI blips for CXRS)
* Neon-seeded experiments showed stability 600

over a larger range of f,,4 than carbon or
nitrogen seeding
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Is it possible to make detachment in low iota more stable? AR
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Summary Y

1.

Wendelstein

Experimentally, we see that the ,low iota” configuration exhibits unstable detachment, which does
not occur in the ,standard” configuration.

Tomographic reconstructions of the radiated power distribution show O-point radiation present in
,Jlow iota“

EMC3-Eirene simulations show similar trends of the radiation pattern as in experiment:

EMC3-Eirene results confirm that it is the increased weight of L-transport which results in the
radiation pattern shift

This this shift in the radiation pattern seems to be associated with radiation bifurcation in simulations

Further experiments planned for OP2.2/2.3 starting this September!
- Destabilization of detachment using island control coils in standard configuration

- Stabilization of detachment using island control coils/neon radiation in low iota
configuration
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Wendelstein

Summary X

Thank you for your attention!

Please check out other W7-X contributions!

D. Carralero 1.135 (next talk)
+ others! ©
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Wendelstem

Low iota radiation is concentrated at island O-point! A

« Detachment in these configurations is unstable

Carbon Radiation EMC3-Eirene Lo Experlment 20230125 018 @ 5 83 0
T T I I l |
0.6 fraa = 60% i D. Zhang
Not seen in L - |
experiment i .
AN o |
= O-point Connected =T . : 1
E 00 P e | O-point Connected to ) O
N radiation to strike line § - strike line? '
4 ] : radiation 1
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2 — —]
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Wendelstein

Upstream radiation from Neon means radiation pattern is more |
distributed

- Neon
. . — NeO+ ) . .
main radiator: —— Nel+ Neon Radiation EMC3-Eirene
—— Ne2+ - 10t
— Ne3+ —_ 0 -
107244 Ned5* —— Ned+ 0.6 - i fraa = 60%
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Wendelstein

Upstream radiation from Neon means radiation pattern is more |~
distributed

Neon
10—30

—— NeO+

main radiator: Nel+ Nego.Radiation EMC3.Eirens
Ne species located near target are also

accumulated at island O-point, but they do not
radiate efficiently!
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