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Special Note to W7-X team:

If desired, please send me your W7-X-related 

oral/poster number, which I can add to the final slide of

my talk.

I could not find these on the conference website. 

Thanks!



Wendelstein 7-X – Overview
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• 5-fold symmetric, quasi-isodynamic stellarator, carbon PFCs 

• Coil system designed for high magnetic flexibility:

Machine Parameters

𝑅 = 5.5 m

𝑎 ≈ 0.5 m

𝑃𝐸𝐶𝑅𝐻 < 10 MW (30min)

𝑃𝑁𝐵𝐼 < 6 MW (8s)

𝐵𝑎𝑥𝑖𝑠 = 2.5-2.6 T
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W7-X utilizes the island divertor concept. 
What does this look like?



What does the SOL geometry look like for the island divertor?
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The details of this geometry depend on the magnetic field

configuration!!
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König et al, Plasma Phys. Control. Fusion 44 (2002)

Island geometry believed to play a critical role in SOL transport

E P S  2 0 2 4  |  S A L A M A N C A ,  S PM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  V.  R .  W I N T E R S  |  0 9 . 0 7 . 2 0 2 4 4

• Simplified models indicate that ratio of ∥- to ⊥-

transport is highly sensitive to the magnetic field line

pitch, 𝚯, within the island[1]:

[1] Y. Feng et al, Plasma Phys. Control. Fusion 64 (2011)
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Experimental flexibility in W7-X  Modification of field line pitch
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Both methods here are believed to increase the weight of

⊥-transport.

Do we see any effects experimentally?
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Experimentally, we see fundamentally different radiation
behavior between standard and low iota configurations
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Further studies power exhaust 

F. Reimold (Invited, Friday)
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Tomographic reconstructions show differing radiated power 
distributions between standard and low iota
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Zhang et al, Nucl. Fusion 61 (2021)

0.54

0.27

0.01

„Standard“ Prad Distribution
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Tomographic reconstructions show differing radiated power 
distributions between standard and low iota
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concentrated

near X-points[2]
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O-point

[2] Y. Feng et al, Nucl. Fusion 61 (2021)
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EMC3-Eirene modeling of standard and low iota configurations
show qualitatively similar trends in radiation patterns
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„Standard“ Prad Distribution (EMC3-Eirene) „Low Iota“ Prad Distribution (EMC3-Eirene)

Radiation near

X-points

Radiation near

O-points

• Generally, Radiation in low iota configuration more concentrated on inboard side islands as

compared to standard (both experiment and modeling)

𝜑 = 36°𝜑 = 36°

[V. R. Winters et al, Nucl. Fusion (submitted)]



EMC3-Eirene modeling reveals that different radiation pattern
indeed arises from island geometry effects
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• We use the „standard“ configuration to understand why O-point radiation increases in „low iota“

• „low iota“ has a smaller Θ than „standard“ (increased weight ⊥-transport)

• In simulation, 2 ways of increasing weight of ⊥-transport:

1. Increase 𝜒⊥ in the simulation

2. Decrease internal island field line pitch: Θ = 2𝑎
𝜄′𝑏𝑟𝑚

𝑅𝑚

𝝌⊥ = 𝟏𝟎. 𝟎 m2 s-1

𝝌⊥ = 𝟎. 𝟕𝟓 m2 s-1

Prad Distribution 𝑰𝒄𝒄 = 𝟎. 𝟎 kA

𝑰𝒄𝒄 = 𝟎. 𝟎 kAPrad Distribution

[V. R. Winters et al, Nucl. Fusion (submitted)]
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1. Increase 𝜒⊥ in the simulation

2. Decrease internal island field line pitch: Θ = 2𝑎
𝜄′𝑏𝑟𝑚

𝑅𝑚
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𝝌⊥ = 𝟎. 𝟕𝟓 m2 s-1

Prad Distribution

Prad Distribution

[V. R. Winters et al, Nucl. Fusion (submitted)]
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Using a simplified impurity model in EMC3-Eirene indicates
radiation bifurcation in the low iota configuration

E P S  2 0 2 4  |  S A L A M A N C A ,  S PM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  V.  R .  W I N T E R S  |  0 9 . 0 7 . 2 0 2 4 1 0

Y. Feng

• No self-consistent solution in EMC3-Eirene exists

in „low iota“ at frad=90%, using impurity transport

• Solutions do exist, however, if one replaces

impurity transport with a constant impurity

concentration

[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]
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iota“ simulations

„Standard“ 

reference

„low iota“

Y. Feng

1 0
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Using a simplified impurity model in EMC3-Eirene indicates
radiation bifurcation in the low iota configuration

E P S  2 0 2 4  |  S A L A M A N C A ,  S PM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  V.  R .  W I N T E R S  |  0 9 . 0 7 . 2 0 2 4

Y. Feng

• No self-consistent solution in EMC3-Eirene exists
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• Radiation bifurcation observed in simplified „low

iota“ simulations

• Results from shift of radiation location to X-

point as it crosses the LCFS
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shift of

radiation to

X-point
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1 0
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Using a simplified impurity model in EMC3-Eirene indicates
radiation bifurcation in the low iota configuration
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• No self-consistent solution in EMC3-Eirene exists

in „low iota“ at frad=90%, using impurity transport

• Solutions do exist, however, if one replaces

impurity transport with a constant impurity

concentration

• Radiation bifurcation observed in simplified „low

iota“ simulations

• Results from shift of radiation location to X-

point as it crosses the LCFS

„Standard“ 

reference

„low iota“

shift of

radiation to

X-point

Possible cause of the radiation instability seen

in experiment (verification pending)

Y. Feng

1 0

[Y. Feng et al, Nucl. Fusion 64 (2024) 086027]



Is it possible to make detachment in low iota more stable?
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• One possible avenue is to increase the field line pitch

(increase weight of ∥-transport)
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evenly distributed in simulations
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over a larger range of 𝑓𝑟𝑎𝑑 than carbon or 
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• One possible avenue is to increase the field line pitch

(increase weight of ∥-transport)

• Simulations still see radiation condensation

between X-points, but more distributed radiation

 still unstable?
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(NBI blips for CXRS)

1 2



Is it possible to make detachment in low iota more stable?
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Is it possible to make detachment in low iota more stable?
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Summary
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1. Experimentally, we see that the „low iota“ configuration exhibits unstable detachment, which does

not occur in the „standard“ configuration.

2. Tomographic reconstructions of the radiated power distribution show O-point radiation present in 

„low iota“ 

3. EMC3-Eirene simulations show similar trends of the radiation pattern as in experiment:

4. EMC3-Eirene results confirm that it is the increased weight of ⊥-transport which results in the

radiation pattern shift

5. This this shift in the radiation pattern seems to be associated with radiation bifurcation in simulations

Further experiments planned for OP2.2/2.3 starting this September!

- Destabilization of detachment using island control coils in standard configuration

- Stabilization of detachment using island control coils/neon radiation in low iota

configuration
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Thank you for your attention!

Please check out other W7-X contributions!

D. Carralero

+ others! 

I.135 (next talk)



Back-up Slides
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Experiment 20230125.018 @ 5.8s

D. Zhang

PRELIMINARY

Low iota radiation is concentrated at island O-point!
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O-point 

radiation

𝑓𝑟𝑎𝑑 = 60%

Not seen in 

experiment

O-point 

radiation

Connected

to strike line

Connected to

strike line?

[16] V. R. Winters et al, In Preparation

• Detachment in these configurations is unstable



Upstream radiation from Neon means radiation pattern is more
distributed
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main radiator:

Ne5+

Ne5+

𝑓𝑟𝑎𝑑 = 60%



Upstream radiation from Neon means radiation pattern is more
distributed
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main radiator:

Ne5+

Ne5+

𝑓𝑟𝑎𝑑 = 60%
Ne species located near target are also 

accumulated at island O-point, but they do not 

radiate efficiently!


