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Motivation

In a fusion reactor, alpha particles must be
confined long enough.

Passing particles are well confined.

In non-optimized stellarators, trapped orbits are
not confined: large neoclassical transport of
thermal particles. Worse for alpha particles. . .

. . . as they do not not enjoy the confining effect
of the E× B drift.

Good fast-ion confinement is a demanding
criterion in stellarator optimization.

The understanding of fast-ion transport and the
development of efficient codes are very important
for the design of stellarator reactors.
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Motivation

Usually, Monte Carlo codes that solve a full-orbit kinetic
equation or a drift-kinetic equation (DKE) for guiding
centers are employed.

I ASCOT [Hirvijoki, CPC 2014], ANTS [Drevlak, NF 2014],
BEAMS3D [McMillan, PPCF 2014], GNET [Masaoka, NF
2013], SIMPLE [Albert, JPP 2020]. . .

Guiding centers move rapidly along B and drift across the
magnetic field. For many applications, averaging over the rapid
motion along B (i.e. over lowest-order orbits) should work.

This talk

Derivation of an orbit-averaged DKE for stellarators*.
I Reduced phase-space dimensionality.

Implementation in a Monte Carlo code, KNOSOS-MC.

*Previous work for tokamaks in
[Eriksson, PoP 1994], [Falessi,
PoP 2019], [Meng, arXiv 2024]
and for model stellarator fields
in [Kolesnichenko, PoP 2006].
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Orderings and assumptions

Plasma consisting of bulk ions with mass mi and charge Zie, electrons with mass me ,
and fast ions with mass mh, charge Zhe and characteristic speed vh.

Zi ∼ Zh ∼ 1, mi ∼ mh, vti � vh � vte .

Strongly magnetized fast ions: ρh∗ = ρh/L0 � 1, where ρh is the fast-ion gyroradius
and L0 ∼ R ∼ a is a characteristic length of the order of the device size.

Small fast-ion density nh: the electrostatic potential ϕ is determined by bulk species
and fast-ion self-collisions are negligible.

ϕ ' ϕ0, where ϕ0 is a flux function.

ρh∗ ∼ νh∗, where νh∗ is the fast-ion collisionality.

Typical values of NBI hydrogen
ions in W7-X and alpha
particles in a Helias reactor
HSR4/18 [Beidler, NF 2001].
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Full-orbit kinetic equation

Under the above assumptions, the equation for the fast-ion distribution fh(x, v, t) is

∂t fh + v · ∇fh +
Zhe

mh
(v × B−∇ϕ0) · ∇v fh = Ch[fh] + sh,

where sh is a source term and the collision term reads [Helander, CUP 2002]

Ch[fh] =
1

2τs
v3
b∇v ·

(
∇v∇vv · ∇v fh

)
+

1

τs
v3
c∇v ·

( v

v3
fh

)
+

1

τs
∇v · (vfh) .

Here, τs is the slowing-down time, and vc and vb are the velocities below which the
drag and the pitch-angle scattering of the bulk ions start to matter.

The E× B drift is negligible in our ordering and certainly for alpha particles, but we
keep it to be able to check its influence in current experiments.
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Drift-kinetic equation

Expanding the full-orbit kinetic equation in ρh∗ � 1, one can average out the motion
of the fast ions around lines of B. The result is the DKE for the guiding centers
[Hazeltine, PoF 1973], [d’Herbemont, JPP 2022].

Velocity coordinates {E , µ, σ, φ}, where E = v2/2 + Zheϕ0/mh, µ = v2
⊥/2B,

σ = v||/|v||| and φ is the gyrophase. Here,

v||(x, E , µ, σ) = σ
√

2 (E − U(x, µ)) , v(x, E) =

√
2

(
E − Zheϕ0(x)

mh

)
,

U(x, µ) := µB(x) +
Zheϕ0(x)

mh
.
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Drift-kinetic equation

One can show that fh ' Fh, where Fh is the gyroaverage of fh.

The equation for Fh is

∂tFh + ẋ · ∇Fh = Ch[Fh] + Sh,

where Sh is the gyroaverage of the source term and the collision term reads

Ch[Fh] = νDhi
v||
B
∂µ
(
µv||∂µFh

)
+

v||
τs

[
∂E

(
v2

v||

(
1 +

v3
c

v3

)
Fh

)
+ 2

(
1 +

v3
c

v3

)
∂µ

(
µ

v||
Fh

)]
.

As for the guiding-center* trajectories, ẋ = v||b̂ + vd , where vd = vM + vE and

vM =
1

Ωh
b̂× (v2

|| b̂ · ∇b̂ + µ∇B), vE =
1

B
b̂×∇ϕ0.

|vd |/|v||| ∼ ρh∗ � 1.

*In what follows, we often refer to guiding-center trajectories as particle trajectories.
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Orbit-averaged DKE: coordinates and lowest-order orbits

Coordinates {r , α, l}.
Expand the DKE in ρh∗ � 1.

Fh = F
(0)
h + F

(1)
h + . . . To lowest order, orbits

follow magnetic field lines and

v||b̂ · ∇F
(0)
h = 0.

U := µB + Zheϕ0/mh and let UM(µ) be the
maximum of U on the flux surface for fixed µ. If
E < UM(µ), trapped. If E > UM(µ), passing.

For trapped particles, F
(0)
h ≡ F

(0)
h (r , α, E , µ, t). For

passing particles, F
(0)
h ≡ F

(0)
h (r , E , µ, σ, t).

F
(0)
h obtained averaging next-order terms of the DKE.
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Orbit-averaged DKE for trapped fast ions

The equation that determines F
(0)
h (r , α, E , µ, t) for trapped particles is

∂tF
(0)
h + vd · ∇r ∂rF

(0)
h + vd · ∇α∂αF

(0)
h = Ch[F

(0)
h ] + Sh ,

where (·) = τ−1
b

∑
σ

∫ lb2
lb1
|v|||−1(·)dl and τb = 2

∫ lb2
lb1
|v|||−1dl is the orbit time.

J(r , α, E , µ) = 2
∫ lb2
lb1
|v|||dl is called second adiabatic invariant.

Relation between the average of vd and J:

vd · ∇r =
mh

ZheΨ′tτb
∂αJ, vd · ∇α = − mh

ZheΨ′tτb
∂rJ,

where Ψ′t is the derivative with respect to r of the toroidal flux.

In the absence of collisions, trapped particles move along curves of constant J.

Iván Calvo, CIEMAT Orbit-averaged approach to fast-ion transport in stellarators 9 / 14



Orbit-averaged DKE for trapped fast ions: junctures connecting wells

The invariance of J can break at
junctures, where particles undergo
transitions between different types of wells.

These collisionless transitions, where the
value of J changes abruptly, are the cause of
fast-ion stochastic transport [Beidler, PoP
2001], [Kolesnichenko, PoP 2022].
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For exactly zero collision frequency, F
(0)
h

can be discontinuous at junctures.

Apply techniques from [d’Herbemont, JPP 2022] to derive the discontinuity condition
by imposing conservation of the collisionless particle flux:

F
(0)
h,I (∂αJI∂rEc − ∂rJI∂αEc) + F

(0)
h,II (∂αJII∂rEc − ∂rJII∂αEc) =

F
(0)
h,III (∂αJIII∂rEc − ∂rJIII∂αEc) .
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Orbit-averaged DKE for trapped fast ions: junctures connecting wells

For finite collision frequency, F
(0)
h is

continuous, but ∂µF
(0)
h is not.

The relation between the values of ∂µF
(0)
h on

each side of the juncture is obtained from
conservation of the collisional particle flux:

(∫ lb2

lb1

|v|||
B

dl

)
I

∂µFh,I +

(∫ lb2

lb1

|v|||
B

dl

)
II

∂µFh,II =

(∫ lb2

lb1

|v|||
B

dl

)
III

∂µFh,III .

Iván Calvo, CIEMAT Orbit-averaged approach to fast-ion transport in stellarators 11 / 14



Orbit-averaged DKE for passing fast ions

The equation that determines F
(0)
h (r , E , µ, σ, t) for passing fast ions is

∂tF
(0)
h =

〈
B

v||

〉−1

r

〈
B

v||
Ch[F

(0)
h ]

〉
r

+

〈
B

v||

〉−1

r

〈
B

v||
Sh

〉
r

.

Here, 〈 · 〉r denotes flux-surface average and we have used that, for passing particles,

∂αF
(0)
h ≡ 0 and 〈vd · ∇r〉r ≡ 0.
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Implementation of the orbit-averaged DKE in a code: KNOSOS-MC
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Alpha particle transport in a Helias reactor configuration, HSR4/18. Alpha particles
born at mid-radius.

KNOSOS-MC (markers) vs guiding-center simulations with ASCOT (solid curves).

In these simulations, KNOSOS-MC is one order of magnitude faster than ASCOT.
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Conclusions and outlook

Orbit-averaged drift-kinetic equation for fast-ion transport in general stellarator
geometry derived.

I Radially global, includes collisions, and accounts for both trapped and passing particles.
I Careful treatment of junctures between different types of wells.

Equation implemented in a new Monte Carlo code, KNOSOS-MC.

Comparisons between KNOSOS-MC and guiding-center calculations with ASCOT support
the validity of the orbit-averaged approach.

KNOSOS-MC seems to be sufficiently fast to include direct simulations of fast-ion
transport in stellarator optimization codes.

Possible routes for future work

Improve numerical methods in KNOSOS-MC and carry out a more complete benchmark.

Integrate KNOSOS-MC into stellarator optimization codes.

Finite-difference code that directly calculates the steady state of the new equation.
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