cea irfm

Capabilities for W source studies on WEST

C. Guillemaut, Y. Corre, C. Desgranges, P. Devynck, M. Diez, N. Fedorczak, J. Gerardin, B. Guillermin, R. Guirlet, J. Gunn, C. Johnson, P. Manas and the WEST Team

ANTERNAL STRUCTURE STRUCTURE

1. Visible spectroscopy systems for W sources on WEST

2. Example of W sources monitoring on WEST limiters

3. Example of divertor W source monitoring under high particle fluence

4. Capabilities for core UV and SOL visible spectroscopy W studies on WEST

Visible spectroscopy systems for W sources on WEST

Good coverage of main chamber wall objects

- **Limiters:** 8 LOS on one inner bumper and 12 LOS on the outer movable limiter
- Antenna limiters: 2 LH antennas covered, 1 ICRH antenna and a 2nd ICRH antenna soon (ORNL)

High resolution divertor visible spectroscopy LOS

- Lower divertor: IT and OT covered with 36 LOS for each with <1cm² resolution (smaller than a monoblock surface)
- **Upper divertor:** only the OT is covered with 36 LOS too

CEA visible spectrometers for W & other impurities

- 2 Princeton Instruments Isoplanes: 27 channels (ROI) each looking at the 385 445 nm domain with 1024x1024 cameras → allows profiles on divertor targets and limiters
- 1 high resolution home made spectrometer dedicated to D_α H_α measurements (512x512 camera looking at the 653.5 658.5 nm domain) for isotopic ratio calculation

ORNL visible spectrometers for W impurities

High resolution McPherson spectrometer: 11 channels (ROI) each looking at a 12 nm range in visible and near UV (~350 to ~500 nm) with a 1600x1600 camera (absolutely calibrated for next campaign)
Filterscope: 9 channels dedicated to WI at 4009 nm and D_α (in maintenance for the next campaign)

2 Example of W sources monitoring on WEST limiters

Significant limiter W sources during start-up

- Monitoring of the W source on main chamber objects has helped identifing a strong and harmful contribution from the outer movable limiter
- The maximum amplitude of the transient limiter W source during start-up is comparable to the divertor W source in ohmic

Monitoring of W migration on low Z limiter tiles

Low Z (BN) tiles were tested on the 1st wall in WEST for 5 campaigns to characterize its effect vs a high Z 1st wall

• The visible spectroscopy system is sensitive enough to observe W migration & accumulation on the BN tiles.

3 Example of divertor W sources monitoring under high particle fluence

Degradation of divertor surfaces with particle fluence

- Thanks to the unique capability of WEST to do long powered discharges, it as been possible to accumulate the particle fluence equivalent to two Pre-Fusion Plasma Operation ITER shots on a divertor made of ITER-grade W monoblocks
- The evolution of the divertor impurity sources were monitored all along by visible spectroscopy

Evolution of the W divertor sources with fluence

- Small increase of the WI/DI ratio on the OT with D fluence
- The visible spectroscopy system observed a significant increase of the WI/DI ratio on the IT probably due to the accumulation of impurities in the deposit → enhanced W sputtering by impurities and self-sputtering

Capabilities for core UV & SOL visible spectroscopy W studies on WEST

- Contribution from antennas to core W content seems dominant
- Smaller contribution from the divertor probably dominated by the IT

More information on WEST UV spectroscopy of core W impurities: 14 [R Guirlet et al., 2022, Plasma Phys. Control. Fusion 64 105024]

- Contribution from antennas to core W content seems dominant
- Smaller contribution from the divertor probably dominated by the IT

More information on WEST UV spectroscopy of core W impurities: [R Guirlet et al., 2022, Plasma Phys. Control. Fusion 64 105024] ¹⁴

- WEST visible spectroscopy system covers all plasma facing objects (upper & lower divertors, one inner limiter, the outer movable limiter, 2 LH antennas and 2 ICRH antennas) with a very high spatial resolution on the divertor monoblocks in particular (<cm²).
- The system can follow transient impurity sources (down to a few ms time resolution for the grating spectrometers) as well as steady state contributions for the very long duration of WEST discharges (several min).
- The visible W spectroscopy measurements can also be coupled to UV spectoscopy analysis of W core impurities to study and better understand W transport in a full metal machine.

Merci!