

LINEAR PLASMA DEVICE CAPABILITIES FOR W SOURCE STUDIES

T.W. Morgan^{1,2}, M.J.H. Cornelissen^{1,2}, O. Marchuk³, A. Uccello⁴, B. Tyburska-Pueschel¹, M. Rasinski³, D. Dorow-Gerspach³, S. Brons^{1,} S. Ertmer³, M. Sackers³, M. Rasinski³, S. Brezinsek³, A. Kreter³, A. Cremona⁴, F. Ghezzi⁴, M. Pedroni⁴, E. Vassallo⁴, G. Alberti⁴, L. Bana⁴, D. Dellasega⁴, M. Passoni⁴

1. Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands

- *2. Eindhoven University of Technology, Eindhoven, The Netherlands*
- *3. Forschungszentrum Jülich, Jülich, Germany*
- *4. ISTP-CNR Milano and Politecnico di Milano*

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Representative conditions with

- Fine control of parameters
- Good diagnostic coverage and access
- Rapid testing cycle
- Easy target exchange

- Comparison EUROfusion linear plasma devices
- Example contributions to W erosion studies
	- Gym
	- PSI-2
	- Magnum-PSI
- UPP and BiGyM
- Cross machine studies

- **Comparison EUROfusion linear plasma devices**
- Example contributions to W erosion studies
	- Gym
	- PSI-2
	- Magnum-PSI
- UPP and BiGyM
- Cross machine studies

EUROfusion linear plasma devices

Four main linear plasma devices in EUROfusion cover the conditions expected in

- First wall (Gym, PSI-2)
- Outer divertor (PSI-2, UPP)
- Divertor strikepoints (UPP, Magnum-PSI)

- Comparison EUROfusion linear plasma devices
- **Example contributions to W erosion studies**
	- Gym
	- PSI-2
	- Magnum-PSI
- UPP and BiGyM
- Cross machine studies

GyM overview and diagnostics

Plasma/Neutral gas diagnostics

- 11 single Langmuir probes (LPs)
- Mach probes
- Optical emission spectroscopy
- Quadrupole mass spectrometry
- Fast camera (shared with SPC-EPFL)

Role of topography in sputtering process of W by GyM He plasma

compact 500 nm-thick W coatings deposited by **HiPIMS** on graphite and silicon substrates w/ different texturing and R_a + polished bulk W, as reference **Samples** from **SP B.4**

Unveil role of topography in sputtering of W by GyM He plasma

Need another **parameter** to represent surface topography

Unveil role of topography in sputtering of W by GyM He plasma

Despite very different topography, $Y_{\text{eff,norm}}(\delta_m)$ well fitted by sigmoid function

ERO2.0 \rightarrow Y_{eff,norm}(δ _m) decreases due to increase of fraction of sputtered W atoms deposited at neighbouring surface **2 μm** $2 \mu m$

PSI-2 Overview and high-resolution spectrometer

S. Ertmer, PhD thesis, High-resolution spectroscopy studies on sputtered atoms in the linear plasma device PSI-2 RUB Bochum, https://doi.org/10.13154/294-8580

Spectroscopic studies on W in PSI-2

- Study of erosion and redeposition of W atoms/ ions using spectroscopy
- W targets: poly W, W (111), W (110), W (100)

Ionization degree: 1-5%

Targets: 13x13mm2

Study energy and angular distribution of sputtered W

(a) 0° LOS, 51 eV

[1] Sackers M. et al, Physics of Plasma (submitted)

Example of W spectra with different structure poly-, mono (100) and (111):

- Using the Doppler emission model [2] one obtains the information on the energy/velocity (VDF) and angular distribution function (ADF) of sputtered tungsten.
- Benchmarking the codes (MD Simulation, TRIM, etc..) close to sputtering energy threshold

[2] Sackers M. et al, Phys. Scr. 98 (2023) 115603

Magnum-PSI overview and diagnostics

During plasma exposure

Thomson scattering: T_a and n_a

Pyrometer, cooling calorimetry and fast IR camera: T_{target} and q

Optical spectroscopy (survey & high-res); RGA: species concentration

Quartz crystal microbalance: erosion monitoring

Collective Thomson scattering system: $T_{i'}$ V_{plasma}

Fast visible light camera up to 1 MHz

Collective Thomson scattering system: Ti, v_{plasma}

Post plasma exposure

Ion beam: Rutherford backscattering

Ion beam: Nuclear Reaction Analysis

Laser Induced Breakdown Spectroscopy

Example: W erosion entrainment and re-deposition

Entrainment results in higher impact energies:

$$
E_i = (fM_{\text{ent}}^2 + 1.5)k_bT_e - eV_{\text{bias}}
$$

 $f =$ mass ratio between impurity & plasma species M_{ent} = ratio impurity speed & plasma sound speed

Two methods used to measure entrainment

 \bullet Data $-Fit$

480.64

486.25

Ar⁺(480.6 nm)

Velocities from Doppler shift

Entrainment accelerates impurities and increases sputtering

Velocity of Ar+ approaches H+ due to entrainment process

Sputtering greatly increased at low ion energies due to entrainment

Through matching to sputtering yield curve can determine M_{ent}

$$
E_i = (fM_{\text{ent}}^2 + 1.5)k_bT_e - eV_{\text{bias}}
$$

- Comparison EUROfusion linear plasma devices
- Example contributions to W erosion studies
	- Gym
	- PSI-2
	- Magnum-PSI
- **UPP and BiGyM**
- Cross machine studies

Upgraded Pilot-PSI

During plasma exposure

Thomson scattering: T_a and n_a

Pyrometer, cooling calorimetry and fast IR camera: T_{target} and q

Optical spectroscopy (survey & high-res); species concentration

Quartz crystal microbalance: erosion monitoring

Ion beam: Rutherford backscattering

Ion beam: Nuclear Reaction Analysis

Fast visible light camera up to 1 MHz

UPP offers operando ion-beam analysis (operational since 2024)

Enables e.g. operando measurements of sputtering and redeposition rates, retention rates (also for B)

BiGyM upgrade

GyM upgrade: BiGyM Nov. 2022 – Oct. 2025 *2 helicon plasma sources*

- To boost performance to study **divertor-relevant PMI**
	- **Plasma-side:** n_e $\leq 10^{19}$ m⁻³ and Γ $\leq 10^{23}$ m⁻²s⁻¹
	- Material-side: T_{sample}≤1500 K
	- **E** Diagnostics-side: hydrogen isotope retention
- To support and complement RFX-mod2 PWI program
- To contribute to educational and training of **young researchers** in view of **DTT**
- To start **brand new activities** in other technological sectors, like aerospace, solar collectors and catalysis

New sample exposure system

- \bullet T_{sample} control 400 K 1500 K
- $V_{bias} \ge -300$ V
- Rotation: ±180°, tilt: 90°

@13.56 MHz,10 kW each

- Comparison EUROfusion linear plasma devices
- Example contributions to W erosion studies
	- Gym
	- PSI-2
	- Magnum-PSI
- UPP and BiGyM
- **Cross machine studies**

Cross machine studies

 0.1 Net Erosion Yield (atoms/lon) 0.01 -Redeposition 0.1 0.001 He on Fe (90 eV) Ar on Fe (80 eV) **FRIM He on Fe (90 eV)** $1 - R$ RIM Ar on Fe (80 eV) 0.0001 0.01 10^{23} 10^{24} 10^{19} 10^{20} 10^{21} 10^{22} Ion Flux $(m^{-2}s^{-1})$

Results from PISCES show sputtering yield discrepancy between low and high Z plasmas and as a function of flux [1]

Possibly due to dynamic He retention in near surface [1]

Results from GyM show similar behaviour

Cross machine comparison initiated between GyM, PSI-2 and Magnum-PSI currently underway

[1] R.P. Doerner, Scripta Materialia **143** (2018) 137-41

Summary: Capabilities of LPD's for W source studies

- Wide variety of conditions achievable with European devices covering expected ITER parameter space for SOL and divertor
- Highly valuable for benchmarking and improvement of codes (e.g. ERO 2.0, SDTRIMSP, MD)
- High quality diagnostics enable studies of important W erosion processes and behaviour in plasma
- Linear plasma devices have been able to elucidate new and important processes relevant for extrapolation of ITER wall performance
- Cross machine studies can offer comparison over wide parameter space
- New machines and upgrades add exciting future possibilities