

Annealing studies of tungsten-based materials

Wolfgang Pantleon

DTU Construct Department of Civil and Mechanical Engineering

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Union or a held responsible for them.

Thermal stability of rolled tungsten plates

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 4

Investigated material							
Rolled tur	ngsten plates fro	m different ma	anufacturers				
AT&M, Ch	ina	Plansee S/E, Austria			A.L.M.T., Japan		
Ø	AT&M 安秦科技	PLANS	EE		A.L.M	.T. Cor	p.
Warm-rolled to different thickness reductions		Warm- and cold-rolled to different thickness		U ci	ni-directional ross-rolled	ly and	
67 %,	W67	WR 2 mm	TP2	U	R	IGW	
80 %	W80	WR 1mm	TP1	С	R low ratio	CLW	
90 %	W90	CR 0.5 mm	TP 0.5	С	R high ratio	CHW	
		CR 0.2 mm	TP0.2		IGW baseline	material on 2020	

Isothermal annealing - overview

	AT&M			Plansee				A.L.M.T.		
	W67	W80	W90	TP1	TP2	TP05	TP02	IGW	CLW	CHW
1100 °C			\blacksquare					V	\blacksquare	V
1125 °C								$\mathbf{\nabla}$	\square	$\mathbf{\nabla}$
1150 °C	$\mathbf{\nabla}$	$\mathbf{\nabla}$	$\mathbf{\nabla}$					$\mathbf{\nabla}$	$\mathbf{\nabla}$	$\mathbf{\nabla}$
1175 °C	V	V	V					V	V	$\mathbf{\nabla}$
1200 °C	$\mathbf{\nabla}$	$\mathbf{\nabla}$	$\mathbf{\nabla}$				300	$\mathbf{\nabla}$	$\mathbf{\nabla}$	$\mathbf{\nabla}$
1225 °C			V	1	-			V	V	V
1250 °C		\square								
1300 °C		$\mathbf{\nabla}$		\checkmark			$\mathbf{\nabla}$			
1325 °C				\checkmark			\checkmark			
1350 °C		V		$\mathbf{\nabla}$		\blacksquare	$\mathbf{\nabla}$			
1375 °C				$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	\checkmark			
1400 °C		V					V			

Tungsten fiber-reinforced tungsten composites

• Fiber composite

Fiber	Matrix
K-doped	pure
tungsten	tungsten
Wire	CVD
Ductile	Brittle

- Pseudo-ductile behavior
- Matrix fails, fibers bridge
- Different interlayers none / erbia / yttria

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 32

Growth of W on W_f by CVD

W wire

CVD W Columnar grains

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 101

W_f/W Annealed 1400 °C, 0.5 d

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 102

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

DTU

W_f/W Annealed 1400 °C, 1 d

W_f/W Annealed 1400 °C, 2 d

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 104

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

DTU

W_f/W Annealed 1400 °C, 3 d

W_f/W Annealed 1400 °C, 4 d

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 106

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

0 d

0.16 d

0.5 d

1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

DTU

W_f/W Annealed 1400 °C, 7 d

W_f/W Annealed 1400 °C, 14 d

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 108

0 d

0.16 d

0.5 d 1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

DTU

W_f/W Annealed 1400 °C, 21 d

0.16 d 0.5 d 1 d 2 d 3 d 4 d 7 d 14 d 21 d 28 d

0 d

W_f/W Annealed 1400 °C, 28 d

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 110

0 d

0.16 d

0.5 d 1 d 2 d 3 d 4 d

7 d 14 d 21 d 28 d

Comparison W_f/W and W_f/Er₂O₃/W

DTU

Similarities

Outward growth

»Secondary rex

 Apparent grain growth in outer layers of wire

»Primary rex

Differences

- Inward growth
 »Secondary rex
- Texture

Thermal stability of tungsten fiber-reinforced tungsten composites – higher temperatures

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 133

2 weeks

Tungsten fiber-reinforced tungsten W_f/W

• Multi fiber composites from Yiran Mao

- Powder metallurgical route
- Single edge notch bending specimens 27x4x3 mm³ (three point bending test specimens)

Spec.	Fibers	Alignment	Matrix	Interlayer	State	
A	Conti- nuous	Parallel in layers	Dense	Yttria	Bend to fracture	

Wolfgang Pantleon | Joint workshop TE PWIE | Aix-en-Provence (online) | 18/09/24 | 145

W_f/W continuous fibers – Light optical microscopy

As-received		Annealing for 1 week at 1450 °C			
notch side	Note fiber elongation from manu- facturing / bending		Grain growth in matrix		
Annealing for 3 days at 1450 °C	1	Annealing for 2 weeks at 1450 °C			
	Grain growth in matrix		Grain growth eliminated fibers completely		

Tungsten with ZrC dispersoids – hardness evolution

Acknowledgement

- Angel Alfonso
- Umberto Maria Ciucani
- Maximilian Fuhr
- Kang Wang
- Daniel Wartacz
- Svitlana Rudchenko
- Oleg Mishin
- Karen Pantleon

- Guang-Nan Luo 🧭
- Xiang Zan

IPP

- Johann Riesch
- Hanns Gietl