

UK Atomic Energy Authority

Dust production in JET and efforts in addressing dust production in B-W environment

Yevhen Zayachuk

WP JET1, WP JET2, WP PWIE, WP TE, EU-Japan Broader Approach contributors

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Joint WPTE-PWIE workshop on PWI in full-W fusion devices Aix-en-Provence, France | 17-19.09.2024

All-metal JET in-vessel materials

Bulk beryllium (Be) Castellated structure

Bulk tungsten (W) Lamellae structure

Inconel vacuum vessel

Tungsten (W) coating on carbonfibre composite (CFC) tile

What can we learn from JET operational experience?

Although JET dust is dominated by beryllium there are still areas of lessons learned:

- Dust collection methods and limitations;
- Dust generation mechanisms;
- Characterisation methods for evaluation of dust quantity, composition, retention;
- Knowledge gaps and need for extrapolation to tungsten machines.

Dust collection methods in JET: overview

- Brushing divertor tile surface
	- Collection on filter paper connected to vacuum pump

Inner divertor: tiles 1, 3, 4

Dust collection methods in JET: sampling characteristics and limitations

Sample: Divertor and main chamber. • Area: Divertor surface – **large surface area** + **non-specific location.** • Form: Loose dust/flakes/debris collected in pots. ➢ *Mass of dust, fuel inventory, characterization of particles.* • Size: **Small particles not collected in pot**. • Samples of loose dust handled in **only few laboratories**. • Area: Divertor /main chamber tile **surfaces-selective area** + **potentially non-representative**. • Form: Loose dust/flakes/debris collected on pads. Sample: Divertor and main chamber. ➢ *Fuel inventory, characterization of particles.* • Size: **Collection of larger particles dominates**. • Can be handled in **many laboratories**. • Area: Recessed inner and outer wall collectors (behind limiters) – **selective region** + **only bottom of the vessel**. • Form: Particles on Si substrate. Sample: Mobile dust in main chamber recessed areas. ➢ *Characterization of particles.* • Size: **All sizes may be collected**. • Can be handled in selection of laboratories. • Area: Divertor surface – **whole single tile surface** + **potentially non-representative.** • Form: Dust on filter paper. Sample: Divertor and main chamber. ➢ *Fuel inventory, characterization of particles.* • Size: **All sizes may be collected**. • Can be handled in selection of laboratories. **In-vessel vacuuming and adhesive paddle in the set of th Dust collectors Brushing**

Transient Impurity Events (TIEs):

- TIEs are radiation spikes in the radiated power.
- Elemental origin can be identified by VUV spectroscopy.
- Ejected W particles detected *in-situ*.

TIE monitoring in JET-ILW

Widdowson, A., et al. (2019) *Nuclear Materials and Energy*, *19*, 218–224. https://doi.org/10.1016/J.NME.2018.12.024

Dust after disruptions detected by HRTS:

- HRTS: Measures Te and ne from Thomson scattered light
- Does not stop after a disruption
- Light from dust particles seen as anomalous spikes
- Provides an indication of dust mobilized/created after a disruption

Flanagan, J. C., et al (2015). *Plasma Physics and Controlled Fusion*, *57*(1), 014037. https://doi.org/10.1088/0741-3335/57/1/014037

1000

960

920

880

 $\overline{}_{840}$

800

760

720

680

Source of molten beryllium droplets

#84832 KL14-P5WA 51.601s (+-0.1s)

Melting along dump plate due to disruptions

Droplets formed in molten region

Beryllium "rain" from top of vessel following a disruption

Typical droplet on dust collector

Size of identified droplets: 4 -8 m.

Jepu, I., et al (2024). *Nuclear Fusion*. https://doi.org/10.1088/1741-4326/AD6614

200

250

150

#84832

50

100

200

400

500

600

Dust generation mechanisms: melting of bulk W under high heat loads

Melting of bulk tungsten plasma facing surfaces only during specific melt experiments (2013 & 2015/16)

2013 Transient tungsten melt experiment - *leading edge*. Evidence of droplets emitted during melting \rightarrow including insitu.

Melting of tungsten Langmuir probe diagnostic due to misalignment

Evidence of droplet formed during melting

Coenen, J. W., et al. (2015). ELM-induced transient tungsten melting in the JET divertor. *Nuclear Fusion*, *55*(2), 023010. https://doi.org/10.1088/0029-5515/55/2/023010 Coenen, J. W., et al. (2017). Transient induced tungsten melting at the Joint European Torus (JET). *Physica Scripta*, *T170*, 014013.<https://doi.org/10.1088/1402-4896/aa8789>

Dust generation mechanisms: flaking of deposits

- Widespread in JET Carbon Wall.
- Reduced deposition in JET-ILW.
- No wide scale flaking observed.

SEM & EDS analysis of adhesive pad

Beryllium flake, surface oxide and tungsten inclusions *Sizes: Few µm to 100s µm*

A. Baron-Wiechec et al., Nucl. Fusion 55 (2015) 113033

Deposit on top of Tile 1 well adhered, rough surface

Thickness of Be deposits ~50 µm. Insufficient thickness for flaking.

Isolated examples of flaking deposit on metallic surfaces in remote divertor corners

Accumulation over time in unexposed locations.

Dust generation mechanisms: flaking of deposits (carbon/historical)

JET-Carbon wall: Flaking deposit on top of Tile 1 & flakes at louvres

JET-Carbon wall: Flaking deposit on top

Historic deposits - JET Specific

Potential for carbon based deposits in remote divertor corners to contaminate dust collected by vacuuming

Thickness of C deposits ~1 mm. Flaking occurs if sufficient thickness is reached. Historical accumulation in unexposed locations.

Dust generation mechanisms: flaking of coatings

Coating degradation - JET specific Tungsten coatings on CFC tiles in main chamber and divertor

IR camera image showing ejection of particulates from localised divertor area

SEM & EDS analysis of adhesive pad at IPPLM

Tungsten and Mo-W flakes

Flakes originate from W/CFC tile coatings.

Two phases:

- *Amorphous (W-1) – metallic glass, fast cooling.*
- *Crystalline (W-2) – original coating.*

Flakes of W coating \rightarrow W droplets.

Formation in the scrape-off layer $-$ i.e., hollow ball.

Baron-Wiechec, A., et al. (2015). *Nuclear Fusion*, *55*(11), 113033. https://doi.org/10.1088/0029-5515/55/11/113033

Yevhen Zayachuk | Joint WPTE-PWIE workshop on PWI in full-W fusion devices | Aix-en-Provence | 17-19.09.2024

FIB/TEM at IFERC Tungsten particles in beryllium deposit

Infrared camera view showing particle shower

White particles are tungsten flakes immobilised in divertor deposit*

Deposit covering Tungsten rich particle molten particle $10 \mu m$ **Layered** deposit

Mobile particles covered by deposit and immobilized. Reduction of mobilizable dust content over time.

*M. Rubel et al., Fusion Eng. Des. (2018). doi:10.1016/j.fusengdes.2018.03.027 Widdowson, A., (2017) *Nuclear Materials and Energy*, *12*, 499–505 https://doi.org/10.1016/j.nme.2016.12.008

13 Yevhen Zayachuk | Joint WPTE-PWIE workshop on PWI in full-W fusion devices | Aix-en-Provence | 17-19.09.2024

Dust generation mechanisms: damage of in-vessel components

In vessel Components

Operation of the reciprocating probe made of boron nitride associated with release of BN particles.

Ni, Cr, Fe based – molten Inconel

Potential of non-PFCs for dust generation.

2 vacuuming stages: Red = inner divertor, Blue = outer divertor

A. Widdowson et al, Nucl. Mater. Energy (2016)<http://dx.doi.org/10.1016/j.nme.2016.12.008> A. Widdowson, et al, Phys. Scr. T159 (2014) 014010 <http://dx.doi.org/10.1088/0031-8949/2014/T159/014010>

Based on erosion/deposition material balance & dust production mechanism of flaking of deposits

Gross increase in mass in divertor:-

- 2013-14 = 63 g
- 2015-16 = 54 g

Assuming dominant dust production process is break-up of deposits: Conversion factor \Rightarrow 2 - 4%

NOTES: -

- Net erosion/deposition values from weighing
- What fraction is dust from flakes or droplets?

Carbon wall dust conversion factor 43% Likonen et al. JNM 463 (2016) 842

- Sampling of dust on JET remote handling boom during intervention:
	- ➢Only one relevant Be flake observed on 10 samples.
	- ➢**Low dust mobilisation.**

Dust – retained fuel

Electron Probe Micro Analysis & Tritium Image Plate Technique

Courtesy T. Otsuka PFMC-18 2021 Otsuka, T. et al. 2021 NME 17 279–283

Tritium retention in divertor dust

Deuterium retention in divertor dust 1.2 x 10^{21} D atoms/g dust (TDS at IFERC)

→ **Dust in divertor contributes <1 % to global fuel retention**

Fuel (tritium) retention highest in carbon particles (JET carbon wall)

Water exposure experiments

- Simulation of water ingress accident scenario.
- Individual castellations with deposits or cracks exposed to boiling water ex-situ.
- **No dust generation by exposure to boiling water.**
	- **No loss of deuterium.** $0 +$ 50 100 150 200 250 300 350 Sample 427 - deuterium: Before exposure E
 $\frac{25}{10}$ 200
 $\frac{15}{2}$ 200
 $\frac{15}{2}$ 150
 $\frac{1}{2}$ 150
 $\frac{1}{2}$ 160
 $\frac{1}{2}$ 160
 $\frac{1}{2}$ $\frac{$ 10^{15} at/cm²

2 4 6 8 10 12

Position, mm

Zayachuk, Y., (2023). *Nuclear Materials and Energy*, *35*, 101437. https://doi.org/10.1016/j.nme.2023.101437

Sources of dust in JET:

• Be melting, tungsten divertor coatings, beryllium deposits, failure and melting of non-plasma facing component elements.

Quantity:

• < 2 g dust vacuumed per operating period (~20 hr plasma/~200GJ input energy).

Potential for mobilization:

- Deposition immobilises dust.
- Low mobilisation during remote maintenance.

Production factors:

• ~2-4 %, from erosion/deposition material balance and deposit delamination.

Fuel inventory:

• <1% of global fuel retention.

- How well is the true size and composition distribution is known (collection method bias)?
- How strong is the adhesion of molten particles to the underlying PFC surfaces \rightarrow potential for mobilization?
- At what point in thickness the deposits begin to flake?
- What are the stresses induced by thermal cycling in the deposit layers?
- What are mechanical properties of deposits?
- What are the relative contributions of different mechanisms of dust generation?
- How these contributions change over time?
- Lack of understanding of relevant dust production mechanisms and scaling criteria required for extrapolation to full-W environment.
- Potential for oxidation and explosion in the event of air ingress?

- Intervention is imminent/ongoing.
- Vacuuming in a few days \rightarrow full divertor sample.
- Start of component removal in ~October \rightarrow outer wall deposition monitor.
- Results from post-ILW3 (2015-2016) operational period, including DTE2 (2021) and DTE3 (2023).

Bridging the gap to B-W environment

- Apply micromechanical testing tools to characterize deposit layers:
	- ➢ Interfacial strength and toughness.
	- \triangleright Bulk deposit strength and toughness.
- Method development stage \rightarrow applied to W-Mo reference samples.

- B-coated W substrates procured (IAP).
- Different roughness \rightarrow study the difference in mechanical properties.