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Outline:

1. Motivation: high confinement, no ELMs, reactor relevant? Still not 
clear.

2. JOREK-GK code: non-linear particle gyro-kinetic code. 
Benchmarking with other codes on linear/non-linear cases for TCV 
parametrs.

3. Modelling of realistic DIII-D pulses. Rho* scaling ? 

4. Comparison of NT (experimental equlibrium)  /PT(mirror fliped
equilibrium)  in non-linear regimes for DIII-D parameters.

5. Comparison of correlation of edge density fluctuations at the edge 
in modelling and experiment: Doppler Backscattering =DBS :

- similar to experiment correlation of edge density fluctuations;
- similar to experiment edge poloidal V_ExB flow; 

6.   Conclusions.
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TCV : EC heated L-mode 

(Te>Ti)=> electron heat 

transport decreases at  

sufficiently strong NT (d~-0.4) 

and high collisionality. Mainly 

TEMs are stabilised at NT.

[Y Camenen NF 2007] 

Motivation:

[A Nelson PRL2023][K E Thome PPCF to be pub2024.]

DIII-D: 2023 dedicated NT campaign on 

diverted plasmas, Te=Ti, low 

collisionality : high core confinement . 

No access to 2nd stability limit in strong 

NT(d~-0.4)=> no high pressure pedestal, 

no ELMs. Seems attractive for reactor? 
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[JOREK as MHD code: G Huysmans, NF 2007, PPCF 2009, M Hoelzl NF2021; 

JOREK-GK: G Huijsmans EPS 2023, M Becoulet EPS 2023,EPS 2024,IAEA 2023] 

JOREK-GK code.

• Particles are initialized on the equilibrium grid, plasma 

profiles and magnetic field calculated by JOREK as fluid 

MHD code => X-point, SOL, divertor, walls, coils  geometry 

can be included.

• Non-linear full-f. 

• Particles are advanced (RK4) in time evolving electric field 

and static magnetic field –electrostatic turbulence. 

• Ions: parallel and ExB motion of gyro-centers in gyro-

averaged electric field.

• Electrons: adiabatic (ITG only) or kinetic electrons 

(ITG/TEM). Heavy electrons (mi/me=100). Guiding centers. 

• Projection and solution in weak form using the same basis 

functions as in fluid MHD. C1 Bezier finite elements on flux-

aligned grid in the poloidal plane, toroidal Fourier 

harmonics. Two types of filters: hyper-diffusion in the 

poloidal plane and a Laplacian in the parallel direction.

• HPC: Typical job (IRENE, France)=> N=5:5:40 toroidal 

harmonics, 5.108 particles,  54 nodes, 48h wall time (~0.5ms 

to saturation), time step dt~ 5.10-8s. Good (close to ideal)  

HPC scaling. 

• Electron-ion collisions model: small angle random scattering 

[Lana Rekhviashvili , Zhixin Lu et al POP 30 (2023)].

Example: COMPASS, 

TEM/ITGs with RMPs
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Benchmarking global JOREK-GK with GS2 and GENE (both local 

flux-tube, w/o X-point) in linear regimes for TCV L- modes in TEM 

regime (Te>Ti): similar linear growth rates in spite of large difference 

in the codes , smaller growth rates at NT compared to PT.

JOREK-GK&GS2 
JOREK-GK (with X) with GENE (w/o X)
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JOREK-GK (all plasma+SOL, yn>0 )GENE-X (band yn>0.57)

Comparison of JOREK-GK with GENE-X for TCV parameters: heat 

fluxes NT<PT, divertor // heat flux is mainly from electrons . Eich’s fit 

(NF 2013):  PT lq =4mm; NT lq =3.5mm. 

[P Ulbl 29th IAEA 2023 ] [M Becoulet EPS2024,IAEA 2023]

JOREK-GK
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JOREK-GK modelling for DIII-D pulses with X-point from 2023 NT 

campaign (Te=Ti)

EQDSK 194288, 

high q95=4.67

EQDSK 193778,

low q95=2.8
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# 193778 B=2T, low q95=2.7; # 194288 high q95=4.7 = cases Bscale=1. Keeping 

the same equilibrium and q-profiles constructing new  Bt=>Bscale*Bt; 

Ip=>Bscale*Ip; ne =>ne*Bscale ^(4/3), Ttot=> Ttot*Bscale ^(2/3), Ptot=> 

Ptot*Bscale^2. As a result r*=>r*Bscale^(-2/3). Here: Bscale=0.5, Bscale=1, 

Bscale=1.5. Electron-ion collisions model: small angle random scattering [Lana 

Rekhviashvili , Zhixin Lu et al POP 30 (2023)]

B=1T (Bscale=0.5)

B=2T (Bscale=1 #193778)

B=3T (Bscale=1.5)

r* scaling in NT? 

B=2T (Bscale=1 #194288)

B=1T (Bscale=0.5) B=3T (Bscale=1.5)
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Scaled low q95(#193778) pulse.  Time 

averaged in saturation (0.38-0.58ms) 

heat conductivity. Confinement 

improves with decreasing r*, gyro-

Bohm?

Better confinement at low q95 

(#193778)  than at  high q95 (# 194288) 

at  Bt=2T for both => ~Ip scaling is

valid for NT plasmas. 

r* scaling in NT=>gyro-Bohm in modelling



10

The normalized to Bohm cB =1/16TeV/BT time and line (OMP) averaged 

heat conductivities as a function of r* (yn=0.5) for all scaled cases. 

Gyro-Bohm scaling for NT in modelling 
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Why confinement increases with decreasing r*? Mean poloidal flow V 

ExB (N=0) increases with Bt for  central plasma, ExB ‘well’ at the edge

is larger for B=1T. 
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𝐶𝑜𝑟𝑟 𝟁1, 𝟁2 = max |𝜹τ 𝐶𝑜𝑟𝑟 𝟁1, 𝟁2, 𝜹τ ; 𝐶𝑜𝑟𝑟 𝟁1, 𝟁2, 𝜹τ =
𝑡1׬
𝑡2

𝜹𝑛(𝟁1,𝑡) 𝜹𝑛 𝟁2,𝑡+𝜹τ 𝑑𝑡

𝑡1׬
𝑡2

𝜹𝑛 𝟁1,𝑡
2𝑑𝑡· 𝑡1׬

𝑡2
𝜹𝑛 𝟁2,𝑡

2𝑑𝑡

Density fluctuations correlation (y_n~<0.7) at outer mid-plane (OMP) 

decreases with decreasing r*.

Bscale=1. (# 193778)Bscale=0.5(# 193778) Bscale=1.5 (# 193778)



13

Similar to #193778 plasma size/shape/parametres but w/o X-point in NT. Mirror 

flipped equilibrium for PT w/o X-point. BUT: because of zero potential

perturbation at the boundary w/o X point (boundary conditions) edge turbulence 

was significantly reduced, no spreading to open field lines as with X-point.  BUT 

: experimentally more turbulence at the edge!

Important comment for modelers: X-point +SOL geometry is important! 

NT
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Comparison of NT /PT . NT: DIII-D #193802;  PT: “mirror flipped” 

equilibrium. Te>Ti

#193802_NT#193802_PT

density

Te
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Running NT/PT up to the established saturated quasi-stationary 

TEM/ITG turbulence (t~0.7ms). Larger edge fluctuations for PT 

compared to NT.
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NT

PT

Larger and longer lasting eddies for PT compared to  NT. Larger

correlation of density fluctuations and heat conductivity in PT. 

dn -density fluctuations

NT

PT

𝐶𝑜𝑟𝑟 𝟁1, 𝟁2 = 0.9, 𝜹τ

max |𝜹τ 𝐶𝑜𝑟𝑟 𝟁1, 0.9, 𝜹τ

c (m2/s)

NT

PT

NT

PT
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NT PT

Larger edge (yn>0.8) density fluctuations correlation at PT 

compared to NT=> larger turbulence, larger heat fluxes
𝐶𝑜𝑟𝑟 𝟁1, 𝟁2 = 0.9, 𝜹τ

𝐶𝑜𝑟𝑟 𝟁1, 𝟁2 = max |𝜹τ 𝐶𝑜𝑟𝑟 𝟁1, 𝟁2, 𝜹τ - plot over line at outer mi-plane (OMP)



18

Larger edge V ExB poloidal for NT compared to PT => stabilizing

NT

PT
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Poloidal zonal flow V ExB is generated by ITG/TEM turbulence 

via Reynolds tensor:  larger and more sheared in NT compared 

to PT at the edge.
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With different profiles #193778 (Ti=Te) the result is similar to 

#193802( where Te>Ti): larger V ExB flow at the edge at NT 

=> more stabilisation=> smaller edge heat flux and 

conductivity at NT 

NT

PT
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Equilibrium #193802 (q95=4) PT&NT, but with different profiles r* 

scaling is not the same! More work needed, scaling with size?

High dentity, higher temperature

gradient, Te=Ti (#193778) => 

gyro-Bohm in PT (?), slightly 

better in NT. 

Lower density, lower temperature

gradient, Te>Ti (#193802), broken

Bohm =stabilisation at higher r* if 

below critical gradient ?

Waltz PoP 2006

PT

NT

NT

NT
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Doppler Backscattering (DBS) measurements in DIII-D: 

density fluctuations, time-space correlation, VEXB rotation. 
L. Schmitz, NT meeting Apr 18 2024.



23

Comparison JOREK-GK with experiment #193802: similar density

fluctuations correlation for yn=0.9, but stronger in modelling at yn=1. 

V ExB close to experimental at NT. Smaller edge rotation V ExB at PT.

𝐦𝐚𝐱 |𝜹𝝉 𝑪𝒐𝒓𝒓 𝟁𝟏, 𝟁𝟐, 𝜹𝝉 - correlation V ExB -poloidal
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1. Particles in global non-linear JOREK-GK code gyro-kinetic ions+ kinetic 

electrons in  realistic X-point geometry, electrostatic TEM/ITGs 

turbulence.

2. Comparison of JOREK-GK with GENE, GS2 for TCV (Te>Ti) in linear TEM 

regime for TCV : similar linear growth rates, larger in PT compared to NT. 

3. Comparison JOREK-GK with GENE-X for TCV parameters (NT&PT). 

Improved core confinement at NT compared to PT.  Divertor heat fluxes: 

PT lq =4mm; NT: lq =3.5 mm. 

4. Modelling of realistic DIII-D (low q95,high q95, PT&NT).  Gyro-Bohm r* 

scaling in NT at high density, Te=Ti=> good for reactor? However seems 

like depends on parameters: at Te>Ti, low density broken Bohm both for 

NT&PT? More work is needed. 

5. Larger poloidal edge V ExB flow at NT compared to PT=> 

stabilizing=>smaller correlation of density fluctuations => smaller 

fluxes=>smaller heat conductivity at NT. 

6. Comparison GOREK-GK modelling results with Doppler Backscattering 

(DBS) measurements for DIII-D # 193802:

- similar to experiment correlation of edge density fluctuations;

- similar to experiment edge poloidal V ExB flow; 

Conclusions
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Running JOREK-GK for three cases (B=1T, 2T (exp.# 

193778), 3T) up to established saturated quasi-stationary 

TEM/ITG turbulence. 
Filters : perp. 2e-11,// 2, particles 5e8, Npsi=150, Nth=500, mi/me=100, N=5:5:40

Low q95 # 193778 B=2T, q95=2.7 
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What about different regime?  Te=Ti (ITG/TEM). Profiles 

#193778, equilibrium #193802 (NT) => « mirror » PT.



Marina Becoulet (CEA/IRFM), DIII-D NT seminar 27

Here collisions el-ions were used. Results are very similar to #193802 

(Te>Ti) w/o collisions:  1) Initial phase gr rates PT>NT, 2)  in saturation Wkin

total (perp and poloidal integral over volume)  NT>PT. 


