

Effects of triangularity on boundary plasma turbulence

Kyungtak Lim

TSVV2 Progress Workshop, Sep 23-24 2024

EPFL GBS deliverables and milestones with ² TSVV2

Within TSVV2, **the GBS code** aims for:

SWISS PLASMA CENTER

- 1. Effects of plasma shaping (elongation, **triangularity**) on boundary plasma turbulence
- 2. Alternative divertor configurations (ADCs) combined with plasma shaping
	- **Single-null (SN)** + NT, **double-null (DN)** + NT, snowflake (SF) + NT
- 3. Neutrals and impurities dynamics in shaped plasmas
	- **Detachment** in NT, neoclassical physics in NT
- 4. Theoretical scaling laws for boundary-related physics
	- power-decay length, density limit, HL-back transition, detachment threshold
- 5. Validation with experimental datasets, particularly with TCV

GBS code: ideal tool for plasma shaping ³ EPFL

Nonlinear, global, flux-driven, two-fluid simulations. Any arbitrary magnetic geometry can be addressed. Kinetic neutrals allow for simulations to attain detached conditions.

EPFL Magnetic equilibria for PT and NT plasmas ⁴

Magnetic geometries are generated using the current-carrying coils.

All parameters remain identical, except the triangularity; **PT** / **NT**

SWISS

We investigate **how triangularity affects SOL plasma turbulence. PLASMA CENTER** K. Lim - TSVV2 Progress Workshops 2024

Enhanced confinement in NT plasmas ⁵ EPFL

In L-mode plasmas, NT shows enhanced confinement: \uparrow saturation, \downarrow fluctuation

GBS L-mode simulations display **interchange-type (BMs)** dominant plasmas

- **PT** -> strong curvature & larger surfaces -> stay longer time in bad curvature
	- NT -> smooth curvature & smaller surfaces -> stay less time in bad curvature

Evidence that RBMs is related to NT plasma reduction ⁶ EPFL

We artificially **turned off the curvature operator** in the vorticity equation.

EXEC Larger fluctuation in PT

SWISS PLASMA CENTER

■ BMs dominant in PT -> reduced BMs in NT

Theoretical modelling based on reduced BMs ⁷ EPFL

Steps are as follows:

- 1. We observed reduced SOL turbulence in NT plasmas, mainly due to BMs
- 2. BMs are driven by the effects of **pressure gradient** and **curvature**
- 3. Linear analysis leads to analytical expression of the growth rate RBMs
- 4. Geometrical formula leads to analytical expression of C at outer midplane
- 5. We combine (3) and (4) to include shaping effects in SOL turbulence

Theoretical scaling law for the SOL size, λ ⁸ q EPFL

SWISS PLASMA

CENTER

We assume that all power crossing the separatrix reaches the targets Reduced NT turbulence leads to small SOL size.

Consistent with experimental measurements

Power-asymmetry in DN configurations ⁹ EPFL

dR sep = distance between inner and outer separatrices

Even in perfect symmetric case, the upper-lower power is not evenly distributed.

Q) What is the physical mechanisms?

- **Q) What are the geometrical effects?**
- **Q) Can we predict it?**

SWISS PLASMA CENTER

Various factors drive up-down asymmetry in DN 10 **EPFL**

Even in balanced **DN (dRsep=0)**, the heat flux is **not balanced** between the upper and lower targets

- (1) **Increasing the value of dRsep enhances** the degree of asymmetry
- (2) **Increasing plasma resistivity** (turbulent level) tends to **reduce** the degree of asymmetry
- (3) Vertical diamagnetic drift **enhances** to up-down asymmetry

EPFL Scaling law for up-down power-sharing

 $\delta R_{\text{sep}} = -13$ mm 0.8 1.0 0.6 R [m]

SWISS PI ASMA **CENTER** Based on these observations **(1) dRsep (2) turbulence (3) diamag. drift** one can derive the analytical scaling law for power-sharing asymmetry.

$$
|q_{\text{LO}} - q_{\text{UO}}| = q_{\text{asym}} = P_{\text{SOL}} \bigg[\alpha_{\text{geo}} + (1 - \alpha_{\text{geo}}) \alpha_d \alpha_{\text{cst}} \bigg]
$$

$$
L_p \sim 1.95 \left((\kappa, \delta, q)^{9/17} A^{1/17} q^{12/17} R_0^{7/17} P_{\text{SOL}}^{-4/17} n_e^{10/17} B_T^{-12/17} L_{\chi}^{12/17} \right)
$$

$$
\alpha_d \propto A^{-1/8} R_0^{1/12} B_T^{3/4} L_p^{-1/12} P_{\text{SOL}}^{-1/4} n^{-3/2} q^{-1}
$$

qψ = total heat flux crossing the separatrix α_d = dimensionless diamagnetic parameter **α geo = effects of dR sep , δ, κ**

The scaling law is applicable for the prediction of power-sharing at the outer targets.

Validation of the scaling with TCV-DN discharges ¹² EPFL

K. Lim - TSVV2 Progress Workshops 2024

Effects of NT in DN-SOL plasmas 13 EPFL

NT plasmas are found to reduce SOL turbulence

DN configurations provide four target plates, beneficial for power handling

Q) what if we combine these two?SWISS PLASMA CENTER

Power load at the targets of DN PT/NT plasmas ¹⁴ EPFL

The sign of B is set so that the majority of the heat flux flows to the lower targets.

NT plasmas exhibit reduced power loads on the targets.

However, there is **a stronger inner flux in NT**, which is **harder to control.**

This may be related to the **challenging NT detachment**

K. Lim - TSVV2 Progress Workshops 2024

Effects of NT on blob dynamics ¹⁵ EPFL

The two-region model is often used to describe blob dynamics.

This model uses the **interchange drive as the blob generation mechanisms** NT will affect blob drive, thereby altering blob behaviours, **size** and **velocity**

$$
\frac{\partial \omega_1}{\partial t} + \frac{R_0}{\rho_{s0}}[\phi_1, \omega_1] = \frac{1}{n_1} \nabla_{\parallel} j_{\parallel 1} + \frac{2T_e}{n_1} \underbrace{C(n_1)}_{n_1} \n\frac{\partial n_1}{\partial t} + \frac{R_0}{\rho_{s0}}[\phi_1, n_1] = 0 \qquad \text{Inter-change drive} \n\frac{\partial \omega_2}{\partial t} + \frac{R_0}{\rho_{s0}}[\phi_2, \omega_2] = \frac{1}{n_2} \nabla_{\parallel} j_{\parallel 2} \n\frac{\partial n_2}{\partial t} + \frac{R_0}{\rho_{s0}}[\phi_2, n_2] = 0
$$

Theoretical scaling for blob size and velocity EPFL

blob size $a^* \propto \mathcal{C}(q, \delta, \kappa)^{1/5} a^*_{\text{ref}},$ $v^* \propto \mathcal{C}(q, \delta, \kappa)^{1/2} v^*_{\text{ref}},$ **blob velocity**

> **ref = scaling without shaping**

Linearization of blob size leads to the derivation of the blob scaling law

NT plasmas are characterized by **smaller and slower blobs PT plasmas** are characterized by **larger and faster blobs**

2D animation of blob dynamics ¹⁷ EPFL

SWISS PLASMA CENTER

only bad curvature & outside separatrix blobs are detected

K. Lim - TSVV2 Progress Workshops 2024

Detection of blobs in NT/PT plasmas ¹⁸ EPFL

NT : smaller size, slower velocity, but **numerous blobs**

Nb of blobs is related to the shearing rate due to steep gradient in NT.

NT mitigated wall-interaction also observed in TCV experiments.

Other on-going works ¹⁹ EPFL

Ongoing works

- 1. **Detachment in NT plasmas**: NT plasmas is harder to achieve the detachment
- 2. **Neoclassical physics in NT plasmas for impurity transport**: conventional NC theory assumes a circular flux surfaces. Shaping will change the analytical expressions.
- 3. **Theoretical scaling law for density limit & HL back-transition**: Reduced boundary turbulence allows us to contain more density.
- 4. **Up-down asymmetric triangularity**
- 5. **Effects of NT on electromagnetic & drift-wave**

