

Forschungszentrum Jülich Germany 25 – 27 November 2024

Atomic, Molecular and Plasma-Material Interaction Data Activities at the IAEA

Christian Hill and Kalle Heinola Atomic and Molecular Data Unit International Atomic Energy Agency

Activities

Technical Meetings

Consultancy Meetings

Data Data Evaluation Production

Coordinated Research Projects

Data Compilation

Databases

Publications

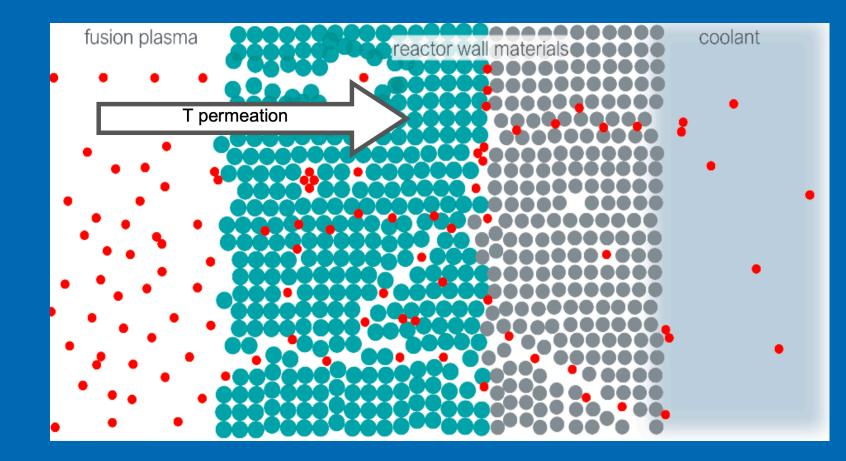
Coordinated Research Projects (CRPs)

Collaborative Research and Development: https://amdis.iaea.org/CRP/

• Focussed research programme to address a specific topic in fundamental data for fusion

energy

- Usually 5 years in duration
- 10 20 participating institutions
- Research Agreements and Research Contracts
- Output data and report


Coordinated Research Projects (CRPs)

- ✓ Data for Erosion and Tritium Retention in Beryllium Plasma-Facing Materials (2011 2016)
- ✓ Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma (2012 – 2016)
- Plasma-wall Interaction with Irradiated Tungsten and Tungsten Alloys in Fusion Devices (2013 2019)
- ✓ Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices (2015 2020)
- ✓ Data for Atomic Processes of Neutral Beams in Fusion Plasma (2017 2022)
- ✓ Atomic Data for Vapour Shielding in Fusion Devices (2019 2023)
- Hydrogen Permeation in Nuclear Materials (2020 –)
- Atomic Data for Injected Impurities in Fusion Plasmas (2023 –)
- The Formation and Properties of Molecules in Edge Plasmas (2023 –)
- \rightarrow Properties of Tungsten lons in Fusion Plasmas (2025 –)

Hydrogen Permeation in Nuclear Materials CRP, 2020 – present

To enhance the knowledge base and reduce uncertainties in data concerning the migration of hydrogen in materials in fusion reactors

- Divertor and main chamber: W, RAFM; joining materials: Cu, CuCrZr0.1
- Parameters affecting hydrogen permeation, trapping, retention and release
- Effect of neutron-induced damage
- Effect of surface chemistry

Hydrogen Permeation in Nuclear Materials

CRP, 2020 – present

- 20 Participants, 15 Member States
- 1st Research Coordination Meeting: Nov 2020
- Technical Meeting on Nuclear Fusion Fuel Permeation in Reactor First Wall Components: October 2021
- Technical Meeting on *Effects of Hydrogen Supersaturation and Defect Stabilization in Nuclear Fusion Materials*: April 2022
- 2nd Research Coordination Meeting: February 2023
- 3rd Research Coordination Meeting: December 2024

- Center for Energy Research, UCSD, United States of America
- 🗷 Bhabha Atomic Research Centre, India
- 🔳 National Research Nuclear University MEPhI, Russia
- SCK CEN, Belgium
- Shizuoka University, Japan
- 🔳 Forschungszentrum Jülich (FZJ), Germany
- Department of Nuclear Engineering, University of Tennessee, United States of America
- 🖀 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, China
- 📧 Kyung Hee University, South Korea
- Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), China
- 📧 National Atomic Energy Commission, Argentina
- III Centre d'Etudes Nucleaires de Cadarache, Association EURATOM-CEA, France
- Institute of Applied Physics, The National Academy of Sciences, Ukraine
- 🖬 Jožef Stefan Institute, Slovenia
- 📰 Uppsala University, Sweden
- III Physique des Interactions Ioniques et Moléculaires (PIIM), Aix-Marseille Université (AMU), France
- 🐸 Beihang University, China
- 🗃 Culham Centre for Fusion Energy, United Kingdom
- 🗄 Department of Physics, University of Helsinki, Finland
- 📕 Max Planck Institute for Plasma Physics, Garching, Germany

Hydrogen Permeation in Nuclear Materials CRP, 2020 – present

Round-Robin Subtasks

- Gas-Driven Permeation (GDP) for Fusion Materials
 - EUROFER97, 30 550 °C, 10 1000 mbar
 - CEA, FZJ, Kurchatov, ASIPP, CNEA, IPP Garching
- Thermal Desorption Spectroscopy (TDS)
 - 0.1 dpa self-damaged W
 - D-plasma exposure / D high-energy implantation / D₂ thermal exposure

Hydrogen Permeation in Nuclear Materials CRP, 2020 – present

Round-Robin Subtasks

- Hydrogen in Neutron-irradiated Materials
 - Irradiation of W by SCK-CEN (Belgium) up to 1 dpa
 - Studies on permeation and defect-evolution
 - Analysis by GDP, PDP, TDS, PAS, NRA
 - Participants: INL, MEPhI, UKAEA, U. Helsinki
 - First campaign (2017 2019)
 - Second campaign (2022 –) to include W, CuCrZr, Mo, Fe, steels

Atomic Data for Injected Impurities in Fusion Plasmas CRP, 2023 – present

<u>Scope</u>

- Species, in order of priority:
 - Ar, N, Ne (all ionization states)
 - Kr, Xe (ionization states present for $T_i > 500 \text{ eV}$)
 - Li, B

<u>Processes</u>

- Charge Exchange (HCX) with H^o
- Electron Impact Excitation (EEX)
- Dielectronic Recombination (ERD) for Ar and Ne (state resolved)
- Spectra (line strengths and wavelengths)
- Collisions with He²⁺ for energies > 100 keV.

Atomic Data for Injected Impurities in Fusion Plasmas CRP, 2023 – present

9 Participants, 8 Member States

- Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), China
- Faculty of Science and Engineering, Curtin University, Australia
- 🛋 Vilnius University, Lithuania
- Indian Institute of Technology, Roorkee, India
- National Center of Nuclear Sciences and Technologies (CNSTN), Tunisia
- 🔲 Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), Sorbonne Université, France
- Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), Argentina
- Institute for Nuclear Research (ATOMKI), Hungary
- Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), China

Atomic Data for Injected Impurities in Fusion Plasmas CRP, 2023 – present

- Theory (data production)
 - Interactions of C, N, O, Ne, Ar, W with H, D, T, He and H₂ (and isotopologues) [Curtin]
 - Arq+, Nq+ and Neq+ spectra (quasi-relativistic HF) [Vilnius]
- Experiment (data production)
 - State-resolved single electron capture cross sections between He and H₂ (~H) and Ar^{q+}, N^{q+} and Ne^{q+}; Dielectronic recombination rates for Ar^{q+} [IMPCAS]
- Evaluation of data
 - Comparison with LHD and EBIT spectra [NIFS]
 - Radiative Divertor experiments with Ar/D₂ and Ne/D₂ seeding at EAST [ASIPP]

The Formation and Properties of Molecules in Edge Plasmas CRP, 2023 – present

<u>Scope</u>

Species, in order of priority:

H₂, BH, BeH, BeH⁺ (and isotopologues)

• LiH

- OH and water-derived species
- WH

Processes

- Molecular Assisted Recombination / Ionization / Dissociation (H₂)
- Spectra (esp. OH, BH)
- Dissociative attachment, mutual neutralization, ion conversion, dissociative recombination (for H₂)
- Electron impact excitation, ionization and dissociation

The Formation and Properties of Molecules in Edge Plasmas

10 Participants, 8 Member States

- 💶 Scottish Church College, India
- University College London, United Kingdom
- Stockholm University, Sweden
- Faculty of Science and Engineering, Curtin University, Australia
- American University of Beirut, Lebanon
- Politehnica University of Timișoara, Romania
- National Institute for Fusion Science, Japan
- Culham Centre for Fusion Energy, United Kingdom
- Université le Havre Normandie, France
- Forschungszentrum Jülich (FZJ), Germany

The Formation and Properties of Molecules in Edge Plasmas CRP, 2023 – present

Processes relating to Molecular Hydrogen in the detached divertor plasma

- Molecular Assisted Recombination: contribution to plasma volume recombination and hence reduced ion particle flux:
 - 1. $H_2(v) + e^- \rightarrow H^- + H$ (dissociative attachment)

 $H^- + H^+ \rightarrow H + H$ (mutual neutralization)

2. $H_2(v) + H^+ \rightarrow H_2^+ + H$ (ion conversion)

 $H_{2^+} + e^- \rightarrow H + H \text{ and } H_{2^+} + H_2 \rightarrow H_{3^+} + H \text{ (dissociative recombination)}$

Molecular Assisted Ionization

 $H_2^+ + e^- \rightarrow H^+ + H^+ + 2 e^-$

Molecular Assisted Dissociation

 $H_{2^{+}} + e^{-} \rightarrow H + H^{+} + e^{-} \text{ and } H_{2^{+}} + e^{-} \rightarrow H + H$

The Formation and Properties of Molecules in Edge Plasmas CRP, 2023 – present

Boron Hydrides

- Boronization to harden the first wall and act as an oxygen getter is necessary for non-Beryllium metal surfaces
- Expect BHn from desorbed B–H bonds on the surface to enter the edge plasma and dissociate.
- BH spectroscopy can be a good diagnostic for real time monitoring of the deposition and desorption processes near the wall surface, as CH molecular spectroscopy is in carbon machines

Properties of Tungsten lons in Fusion Plasmas CRP, 2025 – present

To address data needs in the area of the ionization balance and spectroscopic and collisional properties of tungsten at temperatures between 1 keV and 10 keV

- Ionisation from metastable states of low ionisation stages of W
- Neutral and proton collisions with low ionisation stages of W
- Spectroscopic analysis of low and medium ionisation stages of W

https://amdis.iaea.org/CRP/tungsten-ions

First Research Coordination Meeting expected March 2025.

Networks

Collaborative Research and Development

- Data Centres Network (DCN): https://amdis.iaea.org/DCN/
 - Data standards, priorities, database infrastructure, data dissemination

- Global Network for the Atomic and Molecular Physics of Plasmas (GNAMPP): https://amdis.iaea.org/GNAMPP/
 - Data evaluation and comparison, experimental validation of calculated data, research collaboration and knowledge-exchange

- Code Centres Network (CCN): https://amdis.iaea.org/CCN/
 - Modelling and calculation of data for fusion energy applications; simulations of radiation damage in nuclear materials

Databases

https://amdis.iaea.org/databases/

- Bibliographic Data
- Plasma Collisional Processes
- Radiation Damage in Materials
- Institutions, Events, External Databases

AMBDAS: Atomic and Molecular Bibliographic Data System

ALADDIN: Numerical database of evaluated collisional cross sections and plasma-material interaction data

CollisionDB: Numerical database of collisional data

CascadesDB: Database of Molecular Dynamics simulations of collision cascades in materials of relevant to fusion research

DefectDB: Database of DFT calculations of radiation-induced defects in nuclear-relevant materials

Clerval: Database of institutions, people and events related to atomic and molecular data

Databases

https://amdis.iaea.org/databases/

Data Standards and Tools

- Plasma collisional processes classification
 https://amdis.iaea.org/databases/processes/
- Molecular state quantum numbers:
 - https://amdis.iaea.org/cbc/
- Atomic and Molecular species and states standards and parser PyValem: <u>https://github.com/xnx/pyvalem</u>
- Bibliographic management and integration tools
 - PyRef: https://github.com/xnx/django-pyref
- Atomic and molecular process database framework

Django-Valem: Bibliographic management and integration tools https://github.com/xnx/django-valem

AMBDAS

https://amdis.iaea.org/db/ambdas

- 52397 classified and described records
- Populated by cooperation with:
 - Korea Institute of Fusion Energy
 - NIST (Alexander Kramida)
 - Consultancies
- Search by:
 - DOI
 - Title
 - Author name
 - Year range
 - Reactants, surfaces, adsorbed species
 - Tags (process classification)

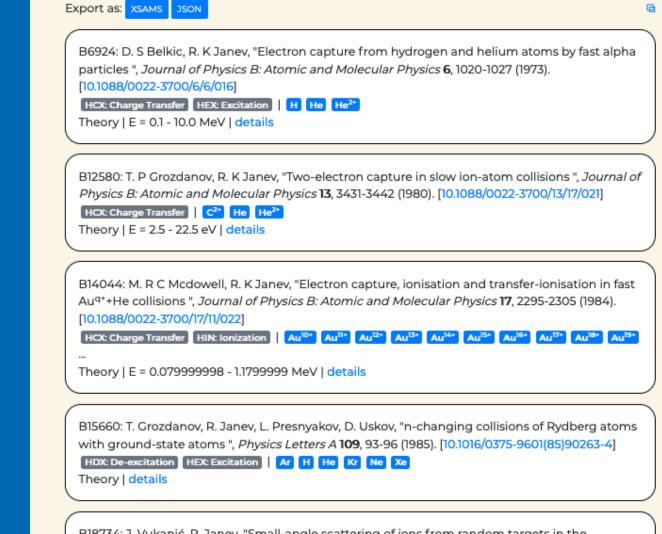
AMBDAS: Atomic and Molecular Bibliographic Data System

Bibliography Search

There are currently 51106 references.

① DOI: Title:	
Author name:	
Year range:	
() Reactant 1:	All charge states?
() Reactant 2:	All charge states?
	Include reactant charges, if relevant e.g. Li, B+, Ni+2, F-, O-2
Surface:	
	Specify alloys by name (e.g. "Steel", "Inconel") or by composition with formulae separated by "." (e.g. "Fe:AI")
Adsorbed Species:	
	Specify multiple adsorbed species separated by "/" (e.g. "CO/Pd")
① Tags:	EAS: Angular Scattering
· 1095.	EBS: Bremsstrahlung
	EDA: Dissociative Attachment
	EDR: Dissociative Recombination
	EDS: Dissociation
	EDT: Electron Detachment
	EDX: De-excitation
	EEL: Elastic Scattering
	EEX: Excitation
	EFL: Fluorescence (Optical Emission)
	A description of three-letter process codes is given here. Select multiple Keywords by clicking whilst holding down CTRL (Windows, Linux) or CMD (%) (macOS)

AMBDAS


https://amdis.iaea.org/db/ambdas

• Records:

- Citation
- DOI
- Tags (process classification)
- Species
- Theory / Experiment
- Energy range

• Records:

- XSAMS (XML)
- JSON

10 Results

B18734: J. Vukanić, R. Janev, "Small-angle scattering of ions from random targets in the screened coulomb region ", *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **16**, 22-32 (1986). [10.1016/0168-583x(86)90222-3]

MRF: Reflection | ²H H^{*} He | Ni Cu Theory | E = 5.0 keV | details

CollisionDB

https://amdis.iaea.org/db/collisiondb

Plasma collisional processes: cross sections and rate coefficients

- 122631 datasets
- Validation
- Unit standardization
- Canonicalize reaction
- DOI resolution
- Numerical checks
- Physics checks
- Provenance preservation
- API and Python library, PyCollisionDB

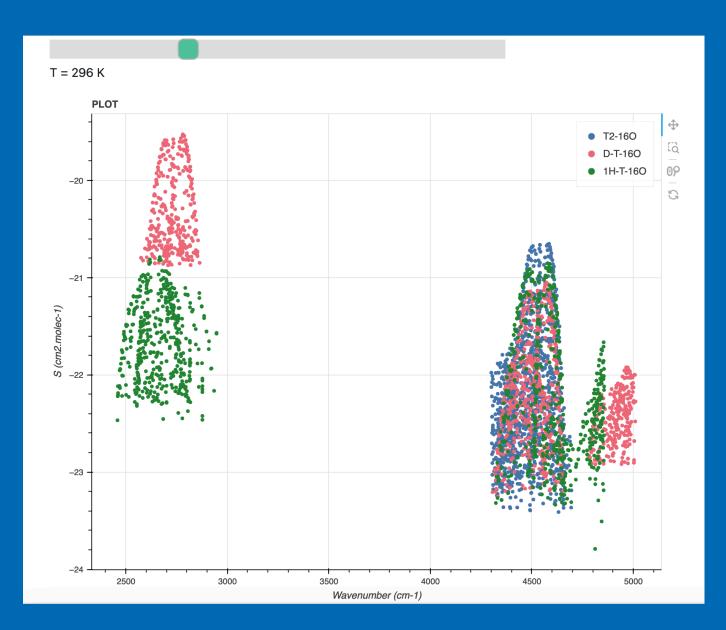
There are currently 122,631 datasets. Click here for advice on specifying species and states.

Please contact <u>ch.hill@iaea.org</u> with any questions or comments about this prototype data service.

③ Reactant 1:	① Reactant 2:
③ Product 1:	O Product 2:
^① DOI:	
^① Author:	
⁽¹⁾ Method:	v
^① Data Type:	v
^① Process Types:	COM: Composite Process with Multiple Channels
	EAE: Auger Electron Ejection
	EAS: Angular Scattering
	EBS: Bremsstrahlung
	EDA: Dissociative Attachment
	EDC: Dielectronic Capture
	EDE: Dissociative Excitation
	EDI: Dissociative Ionization
	EDP: Depolarization, Change of Polarization
	EDR: Dissociative Recombination
	A description of three-letter process codes is given here.
	Select multiple Keywords by clicking whilst holding down CTRL (Windows,
	Linux) or CMD (発) (macOS)
① Evaluated only:	⑦ Valid on: dd/mm/yyyy ➡ Leave unset for the most recent data.

CollisionDB

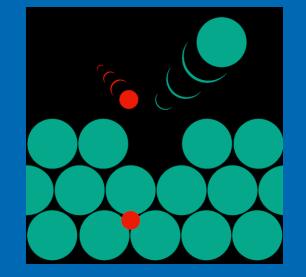
https://amdis.iaea.org/db/collisiondb


Search DataSets There are currently 122,568 datasets. Click here for advice on specifying species and states.
Please contact <u>ch.hill@iaea.org</u> with any questions or commercia about this prototype data service.
O Reactant 1: O Reactant 2: O Product 1: O Product 2:
© Author:
© Data' /pe: ~
 ⁽⁰⁾ Process T, tes: COM: Composite Process with Multiple Channels EAE: Auger Electron Ejection EAS: Angular Scattering EBS: Bremsstrahlung EDA: Dissociative Attachment EDC: Dielectronic Capture EDE: Dissociative Excitation FDI: Dissociative Ionization FDI: Dissociative Ionization FD : Depolarization, Change of Polarization ED : Dissociative Recombination <u>A des tiption of three-letter process codes is given here</u>. Select nultiple Keywords by clicking whilst holding down CTRL (Windows, Linux) or VMD (𝔅) (macOS)
O Evaluated only: O Valid on: dd/mm/yyyy Leave unset for the most recent data. Search Clear

qid:	"D104629"
reaction:	"e- + H2 X(1Σ+g);v=2 → H2+ + 2e-"
<pre> process_types: </pre>	
EIN:	"Ionization"
data_type:	"cross section"
▼ refs:	
▼ B35:	
doi:	"10.1016/j.adt.2021.101424"
<pre> json_comment:</pre>	
<pre>comment:</pre>	"Cross sections for non-dssical Gryzinski method"
▼ json_data:	
method:	"GM"
<pre></pre>	
▼ 0:	
name:	"Е"
units:	"eV"
▼ 1:	
name:	"sigma"
units:	"cm2"
unc_perc:	50

C. Hill, Dipti, K. Heinola, M. Haničinec, "CollisionDB: A new database of atomic and molecular collisional processes with an interactive API", *Atoms* **12**(4), 20 (2024).

stmDB: Spectra of Tritiated Molecules


https://db-amdis.org/stmdb

https://db-amdis.org/pwidb

A database of plasma-surface and plasma-(bulk) material interaction data for fusion energy research applications.Hydrogen in Neutronirradiated Materials

- Sputtering
- Retention
- Reflection

- Diffusivity
- Solubility (Sieverts constants)
- Permeation

https://db-amdis.org/pwidb

Search Plasma-Surface Interaction Data

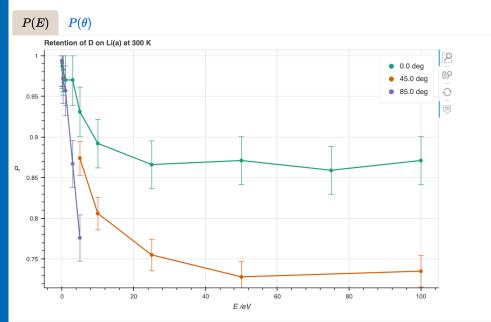
We have 25 PSI datasets available.

Process:		~				
Particle-surface i	interactio	n process				
Species / Pa		D D2 H T			Surface:	Li Liot Liof Li20
DOI:]			
DOI with or witho	out https:	//doi.org/ prefix				
Author:						
				Filter	Reset	

Search Plasma-Material Interaction Data

We have 365 PMI datasets available

Process:	~				
Particle-material interaction	n process				
Species / Particle: D	·	Material:	Ag	Alloy:	1.4914SS
н			Al		14YWT-SM13
Т			Al2O3		316L
			Al2O3-Er2O3		316L(N)-IG
DOI: DOI with or without https://d Author:	doi.org/ prefix				
Method:	~		Scaled	? Unknown ~	
			Filter Reset		


https://db-amdis.org/pwidb

e.g. "Retention of D on amorphous Lithium"

Plasma-Surface Interaction Data Set 85

Retention of D on Li(a) at 300 K

- B1: P. Krstic, E. Ostrowski, F. Domínguez-Gutierrez, S. Abe, B. Koel, "Sputtering and reflection processes from amorphous lithium surfaces by low-energy impacts of H and D atoms and D₂ molecules ", *Journal of Nuclear Materials* 568, 153848 (2022). [10.1016/j.jnucmat.2022.153848]
- B2: P. S. Krstic, S. Abe, E. Schiltz-Rouse, E. T. Ostrowski, B. E. Koel, "Energy, angle, and temperature dependencies of the sticking of D atoms on Li surfaces ", *Journal of Applied Physics* 131 (2022). [10.1063/5.0096816]

$P(E)$ $P(\theta)$			
Retention of D on Li(a) at 300 K			
angle = 0.0 deg	E /eV	Р	unc
	0.025	0.994	0.0315
	0.1	0.987	0.0314
	0.3	0.983	0.0314
	1.0	0.97	0.0311
	3.0	0.97	0.0312
	5.0	0.931	0.0305
	10.0	0.892	0.0299
	25.0	0.866	0.0294
	50.0	0.871	0.0295
	75.0	0.859	0.0293
	100.0	0.871	0.0295

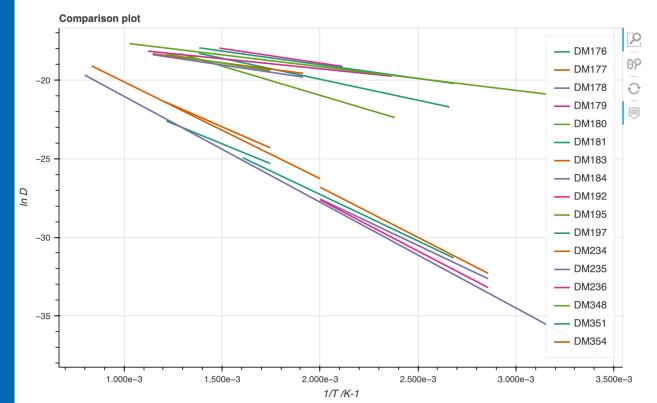
https://db-amdis.org/pwidb

e.g. "Diffusion of H in Steel (all alloys)"

Plasma-Material Interaction Data Set 176 Diffusivity of H in Steel

Download JSON

$$D=D_0\exp\left(-rac{E_{
m d}}{k_{
m B}T}
ight)$$


[In the above formula, the Boltzmann constant is expressed in ${
m eV}\,K^{-1}$.]

- Material: Steel
- Alloy: SS316L
- Method: Experiment
- Data scaled for isotope mass? No

• $D_0 = 7.66e-08 \text{ m}^2 \text{ s}^{-1}$

- $E_{d} = 0.44 \text{ eV}$
- T = 573 823 K

 B73: K. Forcey, D. Ross, J. Simpson, D. Evans, "Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications ", *Journal of Nuclear Materials* 160, 117-124 (1988).
 [10.1016/0022-3115(88)90038-4]

17 Matching Data Sets

ID	Process	Species	Material / Alloy
<u>DM176</u>	Diffusivity	Н	Steel / SS316L
<u>DM177</u>	Diffusivity	Н	Steel / 316SS
DM178	Diffusivity	Н	Steel / SS316L

https://db-amdis.org/pwidb

e.g. "Diffusion of H in Steel (all alloys)"

Plasma-Material Interaction Data Set 176 Diffusivity of H in Steel

Download JSON

 $D=D_0\exp\left(-rac{E_{
m d}}{k_{
m B}T}
ight)$

[In the above formula, the Boltzmann constant is expressed in ${
m eV}\,{
m K}^{-1}$.]

- Material: Steel
- Alloy: SS316L
- Method: Experiment
- Data scaled for isotope mass? No

• $D_0 = 7.66e-08 \text{ m}^2 \text{ s}^{-1}$

- $E_{d} = 0.44 \text{ eV}$
- T = 573 823 K
- B73: K. Forcey, D. Ross, J. Simpson, D. Evans, "Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications ", *Journal of Nuclear Materials* 160, 117-124 (1988).
 [10.1016/0022-3115(88)90038-4]

id:	176	
<pre>qualified_id:</pre>	"DM176"	
process:	"Diffusivity"	
<pre>▼ process_types:</pre>		
▼ 0:		
abbreviation:	"MDF"	
description:	"Diffusion"	
method:	"Experiment"	
scaled:	false	
material:	"Steel"	
▼ species:		
<pre>qualified_id:</pre>	"F3"	
text:	"H"	
charge:	0	
<pre> comment: </pre>	"Heat treated 316L SS, Pressure dependence of permeability: ~P^0.5 for 316L. Data provided by M. Lavrentiev (UKAEA, 2024) with permission from STEP."	
▼ refs:		
v 0:		
qualified_id:	"873"	
authors:	"K. Forcey, D. Ross, J. Simpson, D. Evans"	
▼ title:	"Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications"	
journal:	"Journal of Nuclear Materials"	
volume:	"160"	
<pre>page_start:</pre>	"117"	
page_end:	"124"	
year:	1988	
doi:	"10.1016/0022-3115(88)90038-4"	
bibcode:	"1988JNuM160117F"	
url:	" <u>https://dx.doi.org/10.1016/0022-3115(88)90038-4</u> "	
▼ json_data:		
▼ D0:		
value:	7.66e-8	
units:	"m2.s-1"	
▼ Ed:		
value:	0.44	
units:	"eV"	
▼ Trange:		
0:	573	
1:	823	
i		

Workshops at the Abdus Salam International Centre for Theoretical Physics (ICTP)

Residential Courses of 1 – 2 weeks at the ICTP in Trieste, Italy: https://amdis.iaea.org/workshops/

- 2025: Joint IAEA-ICTP-MAMBA School on Materials Irradiation: from Basics to Applications
- 2024: Data for Modelling Atomic and Molecular Processes in Plasmas
- 2021: Atomistic Modelling of Radiation Damage in Nuclear Systems
- 2021: Atomic Processes in Plasmas: Data-Driven Research
- 2019: Atomic and Molecular Spectroscopy in Plasmas

Questions

- How can data needs be communicated, discussed and prioritised?
- What format are data required?
- How are the data incorporated in codes?
- Is there a need for API access to major databases?
- What about tools for converting between formats?
- What can be done to encourage standardisation in the description of AM & PMI species, states and processes?
- How important is our bibliographic database, AMBDAS?
- How widely-used is ALADDIN in comparison with CollisionDB

