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• Frequency-chirping fluctuations are ubiquitous in magnetized plasmas and are routinely 
observed in space and laboratory environments [1-5]

• Examples are whistler mode chorus [6] and electromagnetic ion cyclotron (EMIC) waves 
in the Earth’s magnetosphere [7]

                                                                                                                        Whistler mode chorus
                                                                                                                        from Themis-A obser-
                                                                                                                        vations in Ref [6].

                                                                                                                         EMIC have been 
                                                                                                                         recently interpreted as
                                                                                                                         due to same physics
                                                                                                                         process [7]. 

OBSERVATION OF FREQUENCY CHIRPING FLUCTUATIONS
• The whistler chorus DSE (as illustration) reads [3,5]

• Here, 𝜕𝜏 = (1 − 𝑣𝑟/𝑣𝑔)𝜕𝑡, ҧ𝜕ℰ = ( Τ𝑘 𝜔)𝜕𝑣∥ + Τ(1 − Τ𝑘𝑣∥ 𝜔) 𝑣⊥𝜕𝑣⊥and 𝜔𝑟𝑒𝑠  is the 

resonance frequency. This equation has 1degree of freedom as 𝐵𝜔 ሶ𝜇 = Ω ሶℰ, with ℰ =
Τ𝑣2 2 , and a nonlinear invariant exists.

• From existing theory [1-5], a wave packet solution of the wave equation can be 
constructed, satisfying the Vomvoridis chirping expression [11], provided that

• The DSE can be solved for weakly varying wave packet amplitude, changing variables 
from (ℰ, 𝜏)to (𝑥, 𝑇) (moving in the wave packet moving frame)

• The solution is expressed as series of orthonormal Hermite functions 𝜓𝑛(𝑥)

• Phase space structure rotation is slowed down by chirping ➔ PHASE LOCKING
• Wave particle power exchange is maximized for 𝑅 ≅ 1/2, consistent with [1-5,11].

• Based on the general theoretical framework of [1-5], the whistler mode chorus chirping 
rate has been shown to obey the Vomvoridis espression [11]

• Same expression can be used to interpret EMIC chirping [7] based on the Trap-Release-
Amplify (TaRA) model for chorus [4] and can predict chorus chirping on MARS [12]. 

• Theoretical analysis is based on the calculation of the renormalized energetic particle 
response by means of a Dyson-like equation (DSE) and the solution a model equation 
for the wave packet evolution, similar to the Dyson-Schrödinger Model (DSM) [13]  
applied to EPM/fishbone fluctuations in tokamaks. 

• In this work:
• The DSE is solved for a generic resonance showing that chirping has the expected

role slowing down the detuning of resonant phase space structures (PSZS) [14,15]
• 𝑅 ≅ 1/2 naturally arises from nonlinear evolution of PSZS
• Vomvoridis expression of chirping rate applies to all resonances, provided the 

appropriate expression of 𝜔𝑡𝑟 is used
• This demonstrates the universal behavior of frequency chirping fluctuations in 

magnetized plasmas.
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• Use action angle coordinates for general tokamak geometry: c and ζc such that 𝜔𝑏 =
ሶ𝜃𝑐and ഥ𝜔𝑑 = ሶ𝜁𝑐 are, respectively, the bounce/transit and the magnetic drift precession 

frequency; ෨Ξ𝑐 parameterizing the equilibrium particle motion as  𝜁 = 𝜁𝑐 + ෨Ξ𝑐 at 
constant actions (μ, J, Pϕ)

• Use the notion of nonlinear equilibrium in the presence of flows[1,14-16] to self-
consistently compute wave-particle resonant interaction with EPM/fishbone

• Near resonance of (m,n) poloidal harmonics  phase locking

• Predicted frequency chirping for EPM/fishbones scales linearly with fluctuation 
amplitude. Effect of zonal flows is embedded in ∆1 [1,14-16].

• Evidence of fishbones and Energetic Particle Modes (EPM) from NSTX [8]
                                                                            

Linear scaling of  EPM chirping rate with  fluctuation amplitude

• PIC simulations of EPM in tokamaks show chirping rate linear scaling with amplitude [9]
• PIC simulations of fishbones show same scaling even in the presence of zonal flows, 

which, however, may reduce the resonance frequency sweeping in phase space [10].
• Same linear scaling observed for chorus emission & chirping: example from space [2-5].
• Underlying physics mechanism: phase locking and maximal wave-particle power 

transfer (see below).

SOLUTION OF THE DYSON-LIKE EQUATION 

CONCLUSIONS AND DISCUSSIONS
• Explicit expression of frequency chirping is derived, showing it is a consequence of 

maximized wave-particle power transfer and phase locking [1-5]. 
• Explicit expression of frequency chirping illuminates the important role of zonal field 

structures [10].
• Explicit expression of chirping rate also shows linear scaling with fluctuation amplitude, 

demonstrating the universal behavior of frequency chirping in space and laboratory
plasmas, consistent with the Vomvoridis expression [11].

• Detailed quantitative numerical verifications of these predictions are in progress. 

CHIRPING MODES IN LABORATORY. COMPARISON WITH 
NUMERICAL SIMULATIONS

intensity contour plot

 theory prediction [1]

 phase locking

for EPM

 𝜔𝑡𝑟  wave-particle trapping frequency
𝑣𝑟  resonant particle speed

       𝑣𝑔 wave packet group velocity

𝑅 ≅ 1/2 normalized chirping rate
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