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OBSERVATION OF FREQUENCY CHIRPING FLUCTUATIONS SOLUTION OF THE DYSON-LIKE EQUATION
* Frequency-chirping fluctuations are ubiquitous in magnetized plasmas and are routinely * The whistler chorus DSE (as illustration) reads [3,5]
observed in space and laboratory environments [1-5] O 2 2\ 9 2 21— 1 5 2 2
= w;.w/(2k7)00; |(w — w 0 Oe(wi.w/k
 Examples are whistler mode chorus [6] and electromagnetic ion cyclotron (EMIC) waves Tfo tr /( _) e [( res) T] 8( tr / )fo
in the Earth’s magnetosphere [7] * Here, 0; = (1 —v,./v,)0;, 0c = (k/a))av" + (1 - kv /w)/v, 0, and wy is the
| Magnetic field from Themis-A resonance frequency. This equation has 1degree of freedom as Bwu = QE, with € =
Whistler mode chorus v2 /2, and a nonlinear invariant exists.
from Themis-A obser- * From existing theory [1-5], a wave packet solution of the wave equation can be
= vations in Ref [6]. constructed, satisfying the Vomvoridis chirping expression [11], provided that
v T
5 g' . 2 2 /
- 3 EMIC have been Eres = Eres,0 +/0 Ruwyw/k”dr
recently interpreted as  The DSE can be solved for weakly varying wave packet amplitude, changing variables
5 due to same physics from (&, 7)to (x,T) (moving in the wave packet moving frame)
.338833?26 1355: process [7]. ) 1/2 (2 — 4R?)1/2 1/2
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CHIRPING MODES IN LABORATORY. COMPARISON WITH wwir \ (2 — 4R2) 0
NUMERICAL SIMULATIONS * The solution isooexpressed as series of orthonormal Hermite funfzixc?ns Y, (x) - _
_ 7 on(z,T) = | o5 |¥n(@) - 5173 Vn(2)
* Evidence of fishbones and Energetic Particle Modes (EPIVI) from NSTX [8] fo@,T) = fo+ Y _{kn[on(@T) = ¢n(z0,0)] + c.c.} f“ Q(f {432)1/2 (2= 4R :
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"é M "' ‘~ ‘ l Sl \ “'M‘ ‘ﬂi u“' "’j 'I “&t ::W’““‘ ’ ; * Phase space structure rotation is slowed down by chirping =» PHASE LOCKING
250} ‘ ‘ ml t d g i '{' l ‘ W " m I * Wave particle power exchange is maximized for R = 1/2, consistent with [1-5,11].
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@ Chirping rate vs. Saturation amplitude for EPM * Use action angle coordinates for general tokamak geometry: O, and (. such that w;, =
9 and wy = CC are, respectively, the bounce/transit and the magnetic drift precessmn
0.0025.- z i e s s il . F os| t=2000% i o] N frequency; 2. parameterizing the equilibrium particle motion as { = (. + Z, at
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3 0-00151 ® A L2 I a1 T consistently compute wave-particle resonant interaction with EPM/fishbone

0.0020 o4 T constant actions (u, J, P))
| ¢ 5% @??*# q e Use the notion of nonlinear equilibrium in the presence of flows[1,14-16] to self-
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() ~ 55( Vo € theory prediction [1] * Near resonance of (m,n) poloidal harmonics € phase locking
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* PICsimulations of EPM in tokamaks show chirping rate linear scaling with amplitude [9 1
muat . Irping rat 8 Plitude [3] O =nCo—mlo+— | Al — | wdt
* PICsimulations of fishbones show same scaling even in the presence of zonal flows, Wh

which, however, may reduce the resonance frequency sweeping in phase space [10].
 Same linear scaling observed for chorus emission & chirping: example from space [2-5].
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Underlying physics mechanism: phase locking and maximal wave-particle power Q= — 0 qu | —F ~0 € phase locking
transfer (see below). - 0P, oL

THEORETICAL ANALYSIS OF CHIRPING RATE * Predicted frequency chirping for EPM/fishbones scales linearlv with fluctuation

 Based on the general theoretical framework of [1-5], the whistler mode chorus chirping amplitude. Etfect of zonal flows is embedded in 4, [1,14-16] A, = [Ew (‘Hﬂ 'V + ‘iéﬁ’:)] !
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rate has been shown to obey the Vomvoridis espression [11] g~ wtr/z — Z | en=E8 4 =t | p—ind—imB+iQ 9N (61)ng)
8 2 € w.,- wave-particle trapping frequency 8P¢ OF W
W Wiy v, resonant particle speed
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R = 1/2 normalized chirping rate

* Explicit expression of frequency chirping is derived, showing it is a consequence of
maximized wave-particle power transfer and phase locking [1-5].

* Explicit expression of frequency chirping illuminates the important role of zonal field
structures [10].

e Explicit expression of chirping rate also shows linear scaling with fluctuation amplitude,
demonstrating the universal behavior of frequency chirping in space and laboratory

: plasmas, consistent with the Vomvoridis expression [11].
* In this work:

. . . o  Detailed quantitative numerical verifications of these predictions are in progress.
 The DSE is solved for a generic resonance showing that chirping has the expected 9 P prog

role slowing down the detuning of resonant phase space structures (PSZS) [14,15] ACKNOWLEDGEMENTS
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 Same expression can be used to interpret EMIC chirping [7] based on the Trap-Release-
Amplify (TaRA) model for chorus [4] and can predict chorus chirping on MARS [12].

* Theoretical analysis is based on the calculation of the renormalized energetic particle
response by means of a Dyson-like equation (DSE) and the solution a model equation
for the wave packet evolution, similar to the Dyson-Schrodinger Model (DSM) [13]
applied to EPM/fishbone fluctuations in tokamaks.
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