

TOF-ERDA analyses of WEST samples

Iva Bogdanović Radović

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

SP B monitoring meeting 2024, October 17

Outline

- Analysis of selected marker tiles C3-C5
- Analysis of inertial standard inner/outer tiles from sectorQ4A (max OSP/max ISP)
- Analysis of ITER like PFU samples

R

2

Analysis of marker tiles iG from C3-C5

Analysis of marker tiles iG from C3-C5

Near surface elemental composition between different campaigns <u>Concentration depth range: (300-700) · 10¹⁵ atoms/cm²</u>

● C3-34iG ● C4-32iG ● C5-33iG

ToF ERDA of marker tiles oD from C3-C5

ToF ERDA of marker tiles oD from C3-C5

C3-22oD on 4 spots , C4-20oD, C5-21oD on 5 different points

- Comparison of near surface composition between different campaigns
- <u>Concentration depth range: (300-700) · 10¹⁵ atoms/cm²</u>

● C3-22oD ● C4-20oD ● C5-21oD

7

WEST C4 campaign

- dedicated He campaign (~45 min. plasma operation) was executed at the end of the C4 campaign in 2019 in the full tungsten WEST tokamak, cumulating ~2000 s of repetitive L mode discharges

 goal to investigate W surface morphology changes under He plasma exposure in a tokamak environment (formation of He nanobubbles and W fuzz)

- campaign designed to meet conditions for W fuzz formation @ OSP on inertial PFU (target for fuzz formation : E_{inc} > 20 eV, fluence> 10²⁴ He/m², T_{surf}>700°C)

15 µm W

С

standard

tile

Inertial standard inner/outer tiles from **sectorQ4A** (max OSP/max ISP) cored for ToF-ERDA at the VTT, Finland

- 17 samples from inner sector 7iA to 7iQ
- 13 samples from outer sector 18oA to 18oM

TOF ERDA was performed along the poloidal direction, from high-field side (HFS) to low-field side (LFS).

- each sample was measured in the middle
- beam spot size \sim 2x3 mm²

∎— He HFS LFS He at. % s (mm)

TOF ERDA He concentration (at.%) in poloidal direction

- significant He content found in the strike point area (up to ~ 6% at ISP and ~ 10% at OSP)

Comparison with dedicated helium campaign in 2015 in the full W ASDEX upgrade

- in both cases conditions for fuzz formation reached E_{inc} > 20 eV, fluence> 10²⁴ He/m², T_{surf}>700°C

dedicated helium campaign in 2015 in the full W ASDEX upgrade

A. Hakola et al., Nucl. Fusion 57 (2017) 066015

WEST C4 surface density >10²¹ He/m² at the OSP

ITER like PFU WECN001

Batch B – « He and W microstructure » MB 5-7-10-15-26-28 IBA: RBI, Croatia MB5-LE MB5-TE MB7-LE MB7-TE MB10-LE MB10-TE MB15-LE MB15-LE MB15-TE MB26-LE MB26-TE REFERENCE MB15back

<u>11 samples 12x14x5 mm3</u>

2 measurements for each sample

<u>1 sample 12x28x8 mm³</u> MB28 (NRA analysis already performed at Demokritos)

WECN001 MB28

-4H

- all together, 9 points were measured at the sample

He profile along the toroidal direction

Thank you for your attention

I. Bogdanović Radović, Z. Siketić

M. Diez, E. Bernard, E. Tsitrone and WEST team

A. Hakola, J. Likonen, T. Vuoriheimo