Production, characterization, and exposure of B reference samples

<u>A. Houben</u>, E. Warkentin, M. Rasiński, M. Sackers, O. Marchuk, T. Dittmar, R. Koslowski, S. Brezinsek, B. Unterberg and Ch. Linsmeier and many other colleagues!

B layer fabrication

Boron layer fabrication in laboratory: Magnetron sputter deposition

- 4 magnetrons, simultaneous operation possible
- Base pressure 10⁻⁷ mbar
- Rotating sample stage -> homogeneous layer
- Biased and heatable sample stage
- Gas injection ring close to sample for reactive sputtering (oxygen, hydrogen, nitrogen)
- Large sample stage

RF-mode, Ar plasma, pure boron target

- → Pure, amorphous boron layers (reliable process parameter)
- \rightarrow B:D layers (first tests performed)
- \rightarrow B:W layers (foreseen for the next months)

Substrates: polished W and 316L-IG steel

B layer fabrication and characterization

Boron layer fabrication in laboratory: Magnetron sputter deposition

- Pure boron, 5.5 h deposition -> ~100 nm thickness, W and steel substrates
- Annealing at 1000°C (W) or 550°C (steel) in vacuum → stable, no peeling, most cases no change of layer

Characterization of B layer after deposition:

- XRD: amorphous
- SEM(FIB): smooth, dense, homogeneous layer
- EDX: oxygen on interface to W or steel, less in B layer, but hard to interpret
- XPS: pure B (no B_2O_3)
- Ongoing: further improvement of characterization techniques (B:D, B:H and B:O)

Interesting feature of B on W:

 B on W: after some weeks: purple dots/whole area purple -> detachment of B layer from substrate -> 'blister', dependent on W substrate surface before deposition, especially W oxide

3

- B layer properties do NOT change (XPS: no change of B signal, no increase in O)
- Annealing of W substrates before deposition and keep under vacuum!

Mitglied der Helmholtz-Gemeinschaft

B layer fabrication and characterization Interesting features of B on 316L steel:

- 'Blister' formation after longer time (~ several months) in air (humidity?)
 - \rightarrow B on steel samples should be kept **under vacuum** as well!
- Change of color and B layer thickness during annealing at 550°C on **some** samples
 - \rightarrow First assumption: oxidation, but no change of B and O signal in XPS observed so far
 - \rightarrow XPS shows Fe signal \rightarrow Fe in the B layer? Why on some samples only? Interface?

 \rightarrow Influence of sample substrate and interface: substrate preparation and characterization has to be done carefully! \rightarrow Keep substrate surface clean and sample under vacuum!

Forschungszentrum

Erosion of B layers by D/H plasma

Plasma

- **PSI-2**: \rightarrow Linear plasma device, various gases are possible (D, H)
 - \rightarrow Incident ion energy: ~10 300 eV, flux: up to 10²² m⁻²s⁻¹
 - \rightarrow First try: B layer was removed completely
 - \rightarrow Second try: successful, see next slide

Erosion of B layers by D plasma

Boron layer fabrication: Magnetron sputter deposition at FZ Jülich

 RF-mode with pure boron target and Ar plasma, ~ 6 h deposition -> ~115 nm thickness on polished and annealed W PSI-2 substrates -> Fig. 1

Deuterium plasma exposure at PSI-2 for B erosion studies:

- Deuterium plasma: ion energy: ~43 eV; density: 6e21 m⁻²s⁻¹
- Simultaneous imaging spectroscopy for boron, calibrated
- Non-cooled PSI- sample holder with Mo mask (Fig. 2)
- Two exposures: identical plasma conditions, identical samples, different exposure times: a) 70 s, b) ~26 min

Comparison: B erosion time from FIB/SEM analysis and spectrometer data:

- Case a) 70 s: first try to see B by spectrometer: visible remains of boron layer, PSI-2 profile visible (Fig. 3) -> FIB/SEM studies
- Case b) ~26 min: no remains of boron layer, detailed imaging spectrometer signal data -> Analysis of spectrometer data

Estimation of B layer erosion rate possible!

6

Erosion of B layers by D plasma

Comparison: B erosion time from FIB/SEM analysis and spectrometer data:

• Please note: Preliminary results, further analysis and estimation of errorbars is ongoing!

Very good agreement of erosion rate between the values obtained by FIB/SEM and spectroscopy! + It is possible to observe the boron (erosion) by spectroscopy!

•

Erosion of B layers by D plasma

Comparison: B erosion by deuterium with published data

- Please note: Preliminary results, further analysis and estimation of errorbars is ongoing!
- **Outlook:** \rightarrow Other ion energies and temperatures at PSI-2
 - \rightarrow Enhancement of the spectroscopy measurements
 - \rightarrow Hydrogen isotope retention measurements (TDS/NRA)
 - \rightarrow Investigation of erosion rate of 'mixed' B layers

