

An update on recent results of turbulence simulation in stellarators J. M. García-Regaña on behalf of the TSVV13 (*Stellarator Turbulence Simulation*) team

24th Coordinated Working Group Meeting, Higashi-Hiroshima 5th of September 2024

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation for TSVV#13: Stellarator turbulence simulation

- □ The understanding of turbulence in stellarators is **limited** in comparison with tokamaks (**computational cost** of handling 3D magnetic geometries and **limitations** of the flux tube).
- □ Some aspects of turbulence remain **practically unexplored** (impurity transport, bulk particle transport, electromagnetic turbulence, interplay between neoclassical (NC) and gyrokinetic (GK) physics).

TSVV13 team: J.M. García-Regaña (P.I.), E. Sánchez, J. L. Velasco (CIEMAT), M. Barnes, J. Omotani (CCFE/U. Oxford), A. Bañón Navarro, J. Riemann, A. Zocco (IPP-Greifswald), P. Mulholland (DIFFER/TU/e).

+ External Experts: I. Calvo (CIEMAT), M. J. Pueschel, (DIFFER/TU/e), F. Wilms, R. Kleiber, K. Aleynikova, J. H. E. Proll (IPP).

+ PhD students: H. Thienpondt, L. Podavini, G. Acton, M. Morren, F. J. Escoto, D. Fernando, M. Morren).

*TSVV = Theory, simulation, validation and verification

- Investigation of the impact of impurities on turbulent transport characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL²24].
- □ The **impact of impurities** on heat fluxes correlates with **impurity density** gradient.
- □ Hollow impurity density* ⇒ heat flux enhancement and strong coupling between species.

*assuming peaked main ion density profile.

- Investigation of the impact of impurities on turbulent transport characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL²24].
- □ The **impact of impurities** on heat fluxes correlates with **impurity density** gradient.
- □ Peaked impurity density* ⇒ heat flux reduction. Ions decouple from quasineutrality.

*assuming peaked main ion density profile.

- Investigation of the impact of impurities on turbulent transport characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL²4].
- □ The **impact of impurities** on heat fluxes correlates with **impurity density** gradient.
- □ Peaked impurity density^{*} \Rightarrow heat flux reduction. Ions decouple from quasineutrality.
- In the case of turbulence reduction **an optimal impurity concentration** appear as a **universal feature**, independently on the device.

*assuming peaked main ion density profile.

- Investigation of the impact of impurities on turbulent transport characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL²24].
- □ The **impact of impurities** on heat fluxes correlates with **impurity density** gradient.
- □ Peaked impurity density* ⇒ heat flux reduction. Ions decouple from quasineutrality.
- In the case of turbulence reduction **an optimal impurity concentration** appear as a **universal feature**, independently on the device.

*assuming peaked main ion density profile.

U How does β impact turbulent heat fluxes?

- $\hfill\square$ \hfill lon heat flux roughly unaffected below $\beta \sim \ 1.5 \ \%$
- □ Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5$ % [Mulholland PRL'23].
- Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- □ Simulations with vanishing temperature gradient.

- **U** How does β impact turbulent heat fluxes?
- $\hfill\square$ \hfill lon heat flux roughly unaffected below $\beta \sim \ 1.5 \ \%$
- □ Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5$ % [Mulholland PRL'23].
- Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- □ Simulations with vanishing temperature gradient.

- **U** How does β impact turbulent heat fluxes?
- $\hfill\square$ \hfill lon heat flux roughly unaffected below $\beta \sim \ 1.5 \ \%$
- □ Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5$ % [Mulholland PRL'23].
- Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- Simulations with vanishing temperature gradient.

□ Adding a small ammount of electron temperature gradient, $a/L_{T_e} = 1.75$, displaces the abrupt increase of heat losses to an even lower $\beta \sim 1.0$ % [Mulholland submitted'24].

Is W7-X confinement on the verge of degrading its performance with β (like τ_E degradation reported for LHD [Weller NF'09])?

Turbulent particle transport in stellarators [Thienpondt PRR'23]

- In neoclassically dominated plasmas, theory predics strongly hollow density profiles in stellarators, that are, in general, not observed.
- Particle transport studied for W7-X combining gyrokinetic stella simulations, KNOSOS neoclassical simulations and 1D neutral model [Thienpondt PRR'23].
- □ Turbulence driven by finite a/L_{T_e} and a/L_{T_i} produces a particle pinch. In W7-X, that pinch \Rightarrow absence of core density depletion.

The parametric dependence has been characterized in detail.

Turbulent particle transport in stellarators [Thienpondt PRR'23]

- In neoclassically dominated plasmas, theory predics strongly hollow density profiles in stellarators, that are, in general, not observed.
- Particle transport studied for W7-X combining gyrokinetic stella simulations, KNOSOS neoclassical simulations and 1D neutral model [Thienpondt PRR'23].
- □ Turbulence driven by finite a/L_{T_e} and a/L_{T_i} produces a particle pinch. In W7-X, that pinch \Rightarrow absence of core density depletion.

The parametric dependence has been characterized in detail.

Whereas each device exhibits a different shape $\Gamma(a/L_n)$, the presence of a **turbulent pinch** is found **in all devices analyzed so far** [Alonso NF'24].

□ Initial gyrokinetic studies of PEP W7-X plasmas [Xanthopoulos PRL'20] neglected the role of the electron temperatura gradient, setting $a/L_{T_e} = 0.0$.

□ With recent stella simulations, PEP scenarios have been revisited retaining a/L_{T_e} and comparing the results against standard ECR shots.

TABLE II. Turbulent thermal diffusivities from STELLA in S.I. units.

Units, m ² /s	$\nabla T_e = 0$	$\boldsymbol{\nabla}T_e = \boldsymbol{\nabla}T_i$	
$\chi_i^{ ext{PEP}}/\chi_i^{ ext{ECR}} \ \chi_e^{ ext{PEP}}/\chi_e^{ ext{ECR}}$	2.50/5.88 N.A.	2.08/2.60 3.60/1.19	

- Simulations without a/L_{T_e} artificially enhance turbulence suppression due to density peaking.
- Electron heat transport can dominate at the ion scale.
- Turbulence suppression is linked to the rapid growth of zonal flows, especially with higher density gradients.

- □ 4-field-period configuration remarkably close to maximum-J property.
- Low effective ripple, $\varepsilon_{eff}(s=0.25)<0.5$ % and small bootstrap current.
- □ Low shear profile with $\iota \sim 0.85 0.95$ at the edge.
- □ Ideal and ballooning MHD stable up to β ~5%.
- **Good** fast-ion confinement at low β and excellent fast-ion confinement at high β .
- **Reduced electrostatic turbulent transport** [García-Regaña submitted'24].

[Sánchez NF'23]

- □ **At high density gradient** CIEMAT-QI4 is remarkably resilient to density gradient driven turbulent transport.
- At intermediate density gradient heat flux reduction is comparable to that W7-X.
- At low density gradients, low ion heat losses are observed for CIEMAT-QI4, which exhibits distinctively different zonal flow (ZF) behavior.

- □ **At intermediate density gradient** heat flux reduction is comparable to that W7-X.
- At low density gradients, low ion heat losses are observed for CIEMAT-QI4, which exhibits distinctively different zonal flow (ZF) behavior.

Direct experimental observation of zonal flows in W7-X [Carralero subm. 24]

- □ **First observations of zonal flows in W7-X** with toroidally separated twin Doppler reflectometers [Carralero EPS'24, submitted'24].
- Comparisons of nonlinear simulations, radially global simulations with EUTERPE and flux tube simulations with stella, **show robust agreement**.
- **Dominant frequency** and **radial location** of maximum correlation are predicted remarkably well.

Summary

Since the last CWGM edition, within TSVV13, we have made substantial progress in understanding:

- The **role of impurities** in turbulence.
- The impact of plasma pressure on the excitation of electromagnetic modes and the consequent increase in heat losses.
- Turbulent particle transport and its role in preventing particle core depletion.
- Heat transport in high-performance plasmas.
- Turbulent transport in new configurations.
- and validating zonal flows measurements for the first time in W7-X.
- And much more:

Additionally, participation of TSVV13 members in the upcoming W7-X campaigns is noteworthy.

Proposal name	Author	Title
ksena_006	P. Mulholland	Stabilisation of KBMs with increasing magnetic shear
rjose_002	<u>J. M. García-</u> Regaña	Turbulent (de)stabilization driven by non-trace impurities
rjose_003	<u>J. M. García-</u> <u>Regaña</u>	Assessment of the relative weight of the different transport channels (i.e. neoclassical and turbulent) on particle transport
dinklage_013	A. Dinklage	Database for the TSVV code validation
edis_003	<u>E. Sánchez</u>	Experimental validation of theoretical expectations of ZF properties
gawe_020	G. Weir	Shear stabilization of ion-scale drift wave turbulence
gawe_021	G. Weir	Matching physics parameters and fluxes to nonlinear gyrokinetic calculations at the ion- scale
tere_003	T. Estrada	Systematic searching for zonal flows using dual V-band DR
dacar_006	D. Carralero	Full characterization of turbulence during suppressed turbulence scenarios
Etc.	Etc.	Etc.