

An update on recent results of turbulence simulation in stellarators J. M. García-Regaña on behalf of the TSVV13 (*Stellarator Turbulence Simulation***) team**

24th Coordinated Working Group Meeting, Higashi-Hiroshima 5th of September 2024

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Motivation for TSVV#13: Stellarator turbulence simulation

- q The understanding of turbulence in stellarators is **limited** in comparison with tokamaks (**computational cost** of handling 3D magnetic geometries and **limitations** of the flux tube).
- q Some aspects of turbulence remain **practically unexplored** (**impurity transport**, **bulk particle transport**, **electromagnetic turbulence**, interplay between neoclassical (NC) and gyrokinetic (GK) physics).

TSVV13 team: J.M. García-Regaña (P.I.), E. Sánchez, J. L. Velasco (CIEMAT), M. Barnes, J. Omotani (CCFE/U. Oxford), A. Bañón Navarro, J. Riemann, A. Zocco (IPP-Greifswald), P. Mulholland (DIFFER/TU/e).

+ External Experts: I. Calvo (CIEMAT), M. J. Pueschel, (DIFFER/TU/e), F. Wilms, R. Kleiber, K. Aleynikova, J. H. E. Proll (IPP).

+ PhD students: H. Thienpondt, L. Podavini, G. Acton, M. Morren, F. J. Escoto, D. Fernando, M. Morren).

***TSVV = Theory, simulation, validation and verification**

- q Investigation of the **impact of impurities on turbulent transport** characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL´24].
- q The **impact of impurities** on heat fluxes correlates with **impurity density gradient**.
- q Hollow impurity density* ⇒ **heat flux enhancement** and strong coupling between species.

*assuming peaked main ion density profile.

- q Investigation of the **impact of impurities on turbulent transport** characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL´24].
- q The **impact of impurities** on heat fluxes correlates with **impurity density gradient**.
- q Peaked impurity density* ⇒ **heat flux reduction**. Ions decouple from quasineutrality.

*assuming peaked main ion density profile.

- q Investigation of the **impact of impurities on turbulent transport** characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL´24].
- q The **impact of impurities** on heat fluxes correlates with **impurity density gradient**.
- q Peaked impurity density* ⇒ **heat flux reduction**. Ions decouple from quasineutrality.
- \Box In the case of turbulence reduction **an optimal impurity concentration** appear as a **universal feature**, independently on the device.

*assuming peaked main ion density profile.

- q Investigation of the **impact of impurities on turbulent transport** characterized in W7-X and, for comparison, in LHD and ITER [García-Regaña PRL´24].
- q The **impact of impurities** on heat fluxes correlates with **impurity density gradient**.
- q Peaked impurity density* ⇒ **heat flux reduction**. Ions decouple from quasineutrality.
- \Box In the case of turbulence reduction **an optimal impurity concentration** appear as a **universal feature**, independently on the device.

*assuming peaked main ion density profile.

\Box **How** does β impact turbulent heat fluxes?

- \Box Ion heat flux roughly unaffected below $\beta \sim 1.5\%$
- \Box Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5 \%$ [Mulholland PRL'23].
- \Box Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- \Box Simulations with vanishing temperature gradient.

\Box **How** does β impact turbulent heat fluxes?

- \Box Ion heat flux roughly unaffected below $\beta \sim 1.5\%$
- \Box Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5 \%$ [Mulholland PRL'23].
- \Box Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- \Box Simulations with vanishing temperature gradient.

J. M. García-Regaña | 24th CWGM | 5/9/2024 | Page 6

How does β impact turbulent heat fluxes?

- Ion heat flux roughly unaffected below $\beta \sim 1.5 \%$
- Ion heat flux abruptly increases by a factor \approx 4 in the range $\beta \sim 1.5 \rightarrow 2.5$ % [Mulholland PRL'23].
- Increase correlates with the presence of subdominant electromagnetic instabilities (KBM).
- Simulations with vanishing temperature gradient.

Adding a small ammount of electron temperature gradient, $a/L_{T_e} = 1.75$, displaces the abrupt increase of heat losses to an even lower $\beta \sim 1.0$ % [Mulholland submitted´24].

Is W7-X confinement on the verge of degrading its performance with β (like τ_F degradation reported for LHD [Weller NF´09])?

Turbulent particle transport in stellarators [Thienpondt PRR´23]

- q In neoclassically dominated plasmas, **theory predics strongly hollow density profiles in stellarators**, that are, in general, not observed.
- Particle **transport** studied for W7-X combining gyrokinetic stella simulations, KNOSOS neoclassical simulations and 1D neutral model [Thienpondt] PRR´23].
- **Q** Turbulence driven by finite a/L_{T_e} and a/L_{T_i} produces **a particle pinch.** In W7-X, that pinch \Rightarrow absence of core density depletion.

The **parametric dependence** has been characterized in detail.

Turbulent particle transport in stellarators [Thienpondt PRR´23]

- q In neoclassically dominated plasmas, **theory predics strongly hollow density profiles in stellarators**, that are, in general, not observed.
- Particle **transport** studied for W7-X combining gyrokinetic stella simulations, KNOSOS neoclassical simulations and 1D neutral model [Thienpondt] PRR´23].
- **Q** Turbulence driven by finite a/L_{T_e} and a/L_{T_i} produces **a particle pinch.** In W7-X, that pinch \Rightarrow absence of core density depletion.

The **parametric dependence** has been characterized in detail.

Whereas each device exhibits a different shape $\Gamma(a/L_n)$, the presence of a **turbulent pinch** is found **in all devices analyzed so far** [Alonso NF´24].

Initial gyrokinetic studies of PEP W7-X plasmas [Xanthopoulos PRL´20] **neglected the role of the electron temperatura gradient**, setting $a/L_{T_e} = 0.0$.

 \Box With recent stella simulations, PEP scenarios have been revisited retaining a/L_{T_e} and comparing the results against standard ECR shots.

TABLE II. Turbulent thermal diffusivities from STELLA in S.I. units.

Units, m^2/s	$\nabla T_e = 0$	$\nabla T_e = \nabla T_i$
$\chi_i^{\text{PEP}}/\chi_i^{\text{ECR}}$	2.50/5.88	2.08/2.60
$\chi_e^{\rm PEP}/\chi_e^{\rm ECR}$	N.A.	3.60/1.19

- Simulations without a/L_{T_e} **artificially enhance** turbulence suppression due to density peaking.
- q **Electron heat transport can dominate at the ion scale**.
- q Turbulence suppression is linked to the **rapid growth of zonal flows**, especially with higher density gradients.

- \Box 4-field-period configuration remarkably close to maximum-J property.
- **Q** Low effective ripple, ε_{eff} (s=0.25)<0.5 % and small bootstrap current.
- \Box Low shear profile with $\iota \sim 0.85 0.95$ at the edge.
- **Q** Ideal and ballooning MHD stable up to $\beta \sim 5\%$.
- **Q Good fast-ion confinement at low** β **and excellent fast-ion confinement at high** β **.**
- □ Reduced electrostatic turbulent transport [García-Regaña submitted´24]. [Sánchez NF´23]

- **Q At high density gradient** CIEMAT-QI4 is remarkably resilient to density gradient driven turbulent transport.
- \Box At intermediate density gradient heat flux reduction is comparable to that W7-X.
- **Q At low density gradients**, low ion heat losses are observed for CIEMAT-QI4, which exhibits distinctively different zonal flow (ZF) behavior.

- \Box At intermediate density gradient heat flux reduction is comparable to that W7-X.
- **Q At low density gradients**, low ion heat losses are observed for CIEMAT-QI4, which exhibits distinctively different zonal flow (ZF) behavior.

Direct experimental observation of zonal flows in W7-X [Carralero subm.´24]

- **First observations of zonal flows in W7-X** with toroidally separated twin Doppler reflectometers [Carralero EPS^{'24}, submitted´24].
- \Box Comparisons of nonlinear simulations, radially global simulations with EUTERPE and flux tube simulations with stella, **show robust agreement**.
- **Dominant frequency** and **radial location** of maximum correlation are predicted remarkably well.

Summary

Since the last CWGM edition, within TSVV13, we have made substantial progress in understanding:

- q The **role of impurities** in turbulence.
- q The **impact of plasma pressure** on the excitation of electromagnetic modes and the consequent increase in heat losses.
- Turbulent **particle transport** and its role in preventing particle core depletion.
- q **Heat transport in high-performance plasmas.**
- q **Turbulent transport in new configurations**.
- q **and validating zonal flows** measurements for the first time in W7-X.
- And much more:

Additionally, participation of TSVV13 members in the upcoming W7-X campaigns is noteworthy.

