ENR-IFE.02.CEA-01

Magnetized ICF

SB.ENR-IFE monitoring of 2024 activities Feb 10 | 2025

Investigation of plasma processes underlying <u>magnetized ICF</u> for energy

Use of laser-based platforms for HED plasmas embedded in strong magnetic fields :

- WP1 Large scale implosion experiments (OMEGA, NIF, LMJ) focus on the extended-MHD effects on the transport of energy and magnetic flux
- WP2 Medium scale experiments (LULI, XFEL, ...) focus on the microscopic (kinetic) physics of heat transport and diffusion of magnetic field

Experiments are combined with modelling efforts

- Radiative-hydrodynamic: CHIC, TROLL
- Extended-magnetohydrodynamic (MHD) codes: HERA, FLASH, GORGON, CHIMERA
- Vlasov-Fokker-Planck (VFP) kinetic codes: Aladin
- Molecular dynamics (DM): *BinGo-TCP, DinMol*
- Atomic physics and collision radiative models: *MERL, PPP-B, ABAKO, SAPHyR*

ENR-IFE.02.CEA-01 – Magnetized ICF **Participants**

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

C. McGuffey

Can magnetization further enhance fusion yields in ICF ?

Strong B-fields embedded in HED plasmas alter charged particles trajectories and change the way heat is transported

 Electron magnetization reduces thermal conduction losses from the hotspot perpendicularly to the B-field

Magnetized ICF

 $\omega_{ce}\tau_e > 1 \implies B > 10^3 - 10^4 \text{ T}$

Magnetic confinement of the α -particles enhances their path, therefore their collisionality within the hotspot, and **raises self-sustained fusion reactions yield** reducing the ρR requirements

$$r_L^{\alpha} < R_{core} \implies B > 10^4 - 10^5 \text{ T}$$

Magnetized and **unmagnetized** α -particles trajectories over the hotspot of an ICF imploded target

Magnetic field compression **Can seed B-fields of ~ 10 Tesla be amplified to ~ 10 kTesla ?**

1) Soaking of seed B-field into the target

2) B-field amplified by advection with the imploding target

Frozen-in-flow Bfield compression

$$\frac{B_{\text{comp}}}{B_0} = \left(\frac{R_0}{R}\right)^{2(1-1/R_m)} \xrightarrow[R_m \gg 1]{} \left(\frac{R_0}{R}\right)^2$$

B/B₀~500, **BR~0.04 T.m** previously demonstrated at OMEGA with 15 kJ laser drive

Hohenberger et al., Phys. Plasmas 19, 056306 (2012)

Design and interpretation of the experiments rely on MHD codes including effects representing the transport of energy, currents and magnetic flux in a plasma

Extended-MHD 2D Gorgon simulations

•

laser heating

- Ray-tracing
- Inverse bremsstrahlung

thermal transport

- Anisotropic conduction
- Righi-Leduc

radiation transport

 Non-diffusive multi-group approx.

magnetic transport

- Advection:
- Bulk plasma
- Nernst + cross-gradient Nernst
- Source terms:
- Bierman Battery
- Sadler
- Resistive diffusion

others

- Lorentz force
- Updated transport coefficients²

¹ Chittenden *et al.*, PPCF **46** B4567 (2004) Walsh *et al.*, Phys. Rev. Lett. **118**, 155001 (2017) Ciardi *et al.*, Phys. Plasmas **14**, 056501 (2007)

² Sadler et al., Phys. Rev. Lett. 126, 075001 (2021)

NIF scientists succeeded proof-of-principle experiment of magnetized indirect drive

26 T seed B-field applied to a D₂-filled capsule <u>indirectly</u> driven at NIF:

- 40% increase ion temperature T_i
- 3.2x increase in neutron yield Y_{DD}

Moody et al., Phys. Rev. Lett. 129, 195002 (2022)

Spherical implosion experiments are inherently **asymmetric**, due to the applied B-field

- Enhanced electron conduction along the pole
- Increased shock velocity at the waist due to reduced electron pre-heat

Novel <u>cylindrical implosion</u> platform at the OMEGA-60 laser facility with dopant K-shell emission spectroscopy to infer plasma conditions of the core

Cylindric plastic shells filled with D₂ at 11 atm with 0.13% atomic concentration of Ar doping for spectroscopic tracing

CH shell

Seed B-field of $B_0 = 30$ T driven externally by a capacitor bank discharge (~µs pulses) MIFEDS: Gotchev *et al.* Rev. Sci. Inst. **80**, 043504 (2009)

 \overrightarrow{B} parallel to cylinder axis and target compressed radially

Laser drive: 40 UV beams, 1.5 ns, total energy of 14.5 kJ

Walsh *et al.*, Plasma Phys. Control. Fusion **64**, 025007 (2022) Bailly-Grandvaux *et al.*, Phys. Rev. Research **6**, L012018 (2024)

Magnetized cylindrical implosions at OMEGA Core conditions strongly modified by the compressed B-field

When applying $B_0 = 30$ T, the resulting compressed core is

- hotter because highly magnetized
- less dense as it hosts a large magnetic pressure

EURO*fusion*

Magnetized cylindrical implosions at OMEGA Implosion reaching a compression ratio CR ~ 20

X-ray pinhole imaging framing cameras with two orthogonal views

Apparent similar compression with and w/o Bfield, despite the different plasma conditions

Differences between $B_0 = 0$ T and $B_0 = 30$ T, predicted by MHD simulations, **indiscernible due to resolution limit**

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

Fuel compression reduced vs MHD predictions Measured convergence ratio of $CR = R_0/R_f \sim 20$ (vs $CR \sim 40$ in MHD sims)

> Pérez-Callejo *et al.*, Rev. Sci. Instrum. **93**, 113542 (2022) Bailly-Grandvaux *et al.*, Phys. Rev. Research **6**, L012018 (2024)

Observed a total of 6 main Ar K-shell emission lines in two different charge states of Ar

Experimental <u>time-integrated</u> argon K-shell emission

Reproducible spectra for both **magnetized** and **unmagnetized** cases (over 6 shots : 4 with B-field, 2 w/o B-field)

Observed systematic changes between $B_0 = 30$ T and $B_0 = 0$ T :

Higher $Ly_{\theta} / He_{\gamma}$ and Ly_{α} / He -like satellite line intensity ratios for the magnetized case

H-like population increases in magnetized case

⇒ Evidence of a hotter core

Bailly-Grandvaux et al., Phys. Rev. Research 6, L012018 (2024)

Magnetized cylindrical implosions at OMEGA **Post-processed MHD sims agree with experimental spectra**

Time-integrated experimental data vs. synthetic spectra (from post-processing of MHD simulations)

Match between synthetic and experimental spectra allows to extract the compressed B-field at the time of experimental peak compression

 $B_{\rm comp} \sim 10 \, \rm kT$, BR ~ 0.1 T.m at $CR \sim 20$

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

Bailly-Grandvaux et al., Phys. Rev. Research 6, L012018 (2024)

Experimental relative intensities and Stark- and opacity-broadened line profiles satisfactorily reproduced (up to 6 primary line transitions spanning in two different charge states), for both magnetized and unmagnetized cases

Spectral calculations consider the whole apparatus of **non-LTE atomic kinetics**¹, **Stark-broadening theory**² and **radiation transport**

¹Florido *et al.*, Phys. Rev. **E** 80, 056402 (2009)

² Mancini *et al.*, Comput. Phys. Commun. **63**, 314 (1991) Ferri *et al.*, Matter Rad. Extremes **7**, 015901 (2022) Gigosos et al., Atoms **9**, 9 (2021)

Analysis converge to a core temperature increase by \sim 50% and core density decrease by a factor \sim 2, in line with findings from the MHD simulations

The cylindrical implosions are affected by a strong magnetization ($\omega_{ce}\tau_{ei} \sim 85$) and significant magnetic pressure ($\beta \sim 7$)

Bailly-Grandvaux et al., Phys. Rev. Research 6, L012018 (2024)

Magnetized cylindrical implosion experiments offer insights into the physics of heat and magnetic flux transport

Discovery Science project granted at NIF (2 shot days in 2024 and 2025)

Compressed magnetic field strength and **topology** can be characterized from angularly resolved ToF spectra of secondary neutrons

Schmitt et al., Phys. Rev. Lett. 113, 155004 (2014)

- 25x more laser energy and 6x larger targets than at OMEGA
- Predicted formation of a 50-100 µm radius core, with *BR up to 0.9 Tm* (~0.1 *Tm at OMEGA*)

X-ray imaging and streaked Ar K-shell emission suggest a maximum compression ratio CR \sim 13 at 9-10 ns time (MHD simulation predicted CR \sim 20 at 11 ns)

Implosion dynamics inspected from 50 ps-gated X-ray images v_{imp}

 $v_{imp} \approx 12 \text{ km/s}$

Magnetized shot, $B_0 = 16.5 \text{ T}$

Suspected target dismantlement due to RT instability

Ar K-shell lines observed when external B-field is applied, but their identification is difficult

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

X-ray imaging and streaked Ar K-shell emission suggest a maximum compression ratio $CR \sim 13$ at 9-10 ns time (MHD simulation predicted $CR \sim 20$ at 11 ns)

Implosion dynamics inspected from 50 ps-gated X-ray images $v_{imp} \approx$

 $v_{imp} \approx 12 \text{ km/s}$

 $1 \,\mathrm{mm}$

Magnetized shot $B_0 = 16.5 \text{ T}$

Unmagnetized shot

A more uniform implosion with applied B-field

Magnetized cylindrical implosions at NIF

The magnetized shot has about 3x higher DD neutron yield

ToF signals from primary DD-fusion neutrons

	θ	φ
NP	18°	303°
PL	63°	70°
Ε	90°	174°
Α	116°	316°

Increase ($\sim 3 \times$) in primary neutron yield for magnetized shot in all 5 ToF detectors, but...

- $Y_{DD}^n \sim 10^9$ (vs. 10^{11} expected)
- No DT neutrons detected

Increase in neutron yield likely originates from the more stable implosion with applied B-field

Magnetized cylindrical implosions at NIF Ar emission in the magnetized case indicates ~ 1.4 keV core $\langle T_{\rho} \rangle$

EUROfusion

With external B-field applied, the average core temperature is estimated to be \sim 1.4 keV (\sim 2 keV expected) In the unmagnetized shot, crystal defects are obscuring the Ar line emission

r (µm)

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

r (µm)

Snapshots close to stagnation (t=9.6 ns)

2D CHIMERA simulations

10 ns drive, 3 kJ/beam4 mm initial ODincluding 3D ray tracing

Magnetized cylindrical implosions at NIF Recent extended-MHD simulations show instabilities

105

104

10³

10²

10¹

r (µm)

B (T)

Increase stability with thicker shell (50 μ m \rightarrow 100 μ m) and higher fuel mass (10 atm \rightarrow 20 atm)

The thicker shell should be less prone to instabilities and shredding

- Bang time is reached later, at \sim 15 ns
- DD yield is reduced from 10¹¹ to 4x10⁹

Optimizing the pulse-shape (flat top \rightarrow custom pulse shape)

Optimization runs ongoing performed with xRAGE code to increase yield while maintaining a stable implosion

Magnetized cylindrical implosions at LMJ Moving the platform to ignition scale facilities

Magnetized cylindrical implosion experiments offer insights into the physics of heat and magnetic flux transport

LMJ shots granted through Association Laser-Plasma re-scheduled to 2027

- Drive energy comparable to NIF
- Relatively small targets (only 2x larger than at OMEGA) yield very high compression, CR ~ 60
- Constrained to B₀ ~ 3 T using <u>laser driven-coils</u>

4 kA discharges in 2000 μm-radius coils (already validated at LMJ)

⇒ 3 T seed B-field amplified to 10 kT from expected CR~60

Dual dopant (Ar + Kr) spectroscopy to characterize core electron temperature with an effective spatial resolution

Pérez-Callejo et al., Phys. Rev. E 106, 035206 (2022)

Magnetized cylindrical implosions at LMJ **Dual-dopant (Ar+Kr) spectroscopy "sees" into the magnetized core EURO***fusion*

Large range of temperatures in the magnetized core, up to >2.5 keV, requires **addition of Kr-doping** to probe hottest regions

Large spectral differences predicted between unmagnetized and magnetized shots

In the magnetized core, the **dual-dopant** technique scrutinizes the magnetization effects at the \Rightarrow effective spatial core periphery (Ar emission for $T_e < 2.5$ keV) and at the core center (Kr emission for $T_e > 2.5$ keV) resolution $T_e(r)$

Pérez-Callejo et al., Phys. Rev. E 106, 035206 (2022)

Laser-driven B-fields for magnetized HED experiments

Working principle for B-field generation in a laser-driven coil

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

LDC performance in different laser facilities

Important Parameters

EUROfusion

For all cases intensity ranges $10^{15} \leq I_{las} \leq 10^{16} \text{ W/cm}^2$

@	PALS :	E_{las} = 0.6 kJ, λ = 1.315 μm, L = 7 nH
@	LULI :	E_{las} = 0.5 kJ, λ = 1.053 μm, L = 3.7 nH
@	OMEGA :	E_{las} = 2 kJ, λ = 0.351 μm, L = 6.5 nH
@	LMJ:	E_{las} = 12.5 kJ, λ = 0.351 μ m, L = 7.9 nH

Lower peak B-fields are achieved in large scale facilities where large magnetized volumes are required

The lower wavelength (3ω) is not helping

ENR-IFE.02.CEA-01 – Magnetized ICF WP1 deliverables

- D1.1 Extend the cylindrical implosions under B-fields from 15 kJ (at Omega) up to 300 kJ laser drive (at NIF) Magnetized shot shows an increase of primary neutron yield and implosion stability Observed Ar H-like lines are compatible with $T_e \approx 1400 \text{ eV}$ in the core (when external B-field is applied) – presented at EPS CPP 2024 (J.J. Santos, invited talk; A. Bordon, poster) and at APS DPP 2024 (E. Rovere, talk)
- D1.2 Characterize ion temperature (from primary neutron yield) and the amplitude and topology of the compressed B-field (from secondary neutrons) at NIF

Secondary neutron yield not observed in the NIF shots of June 2024, compatible with measured $CR \sim 12$ Improved target (thicker shell, denser fuel) and laser-drive (pulse shaping) designs for the follow-up NIF shots in April 2025

EURO*fusion*

2nd year (2025):

D1.3 - Report on the improved spectroscopic techniques

Dopant K-shell emission spectroscopy successfully characterizes dense, magnetized, laser-driven plasmas, led to **quantitative** estimates of the imploded core plasma conditions: at OMEGA, 50% increase in core temperature in magnetized shots consistent with compressed B-field \sim 10 kT ()

Dual-dopant techniques (Ar + Ne and Ar+Kr in respectively cylindrical and spherical implosions) are being submitted

- D1.4 Magnetized cylindrical implosion experiment at LMJ with 300 kJ laser drive and LDC targets for generating the seed B-field Postponed to 2027; Design improvement is ongoing for both the implosions and the seed B-field driving with LDC
- D1.5 For NIF experiments: core temperature profiles from dual-dopant K-shell emission spectroscopy

Objective transferred for the LMJ experiment, given the lower CR (more stable) with the novel NIF targets

and B-field compressibility from angularly resolved spectra of secondary neutrons emission

Transport coefficients link the electric and magnetic fields to currents and temperature gradients

B-field advection velocity :

$$\underline{v}_{B} = \underline{v} - \gamma_{\perp} \nabla T_{e} - \gamma_{\wedge} (\underline{\hat{b}} \times \nabla T_{e}) - \frac{\underline{j}}{en_{e}} (1 + \delta_{\perp}^{c}) + \frac{\delta_{\wedge}^{c}}{en_{e}} (\underline{j} \times \underline{\hat{b}})$$
Nernst Cross-gradient- Hall terms

and the heat flux to temperature gradients

Heat flux :

Different theories predict different coefficients

Sadler et al., Phys. Rev. Lett. 126, 075001 (2021)

Strong need to compare to experimental measurements, which are challenging;

There is very little experimental data...

ENR monitoring of 2024 activities, 10 Feb 2025 - J.J. Santos, joao.santos@u-bordeaux.fr

The transport coefficients stem from e-i and e-e collisions (micro-physics)

For weakly coupled plasmas, they essentially depend on :

- the **Hall parameter** $\chi = \omega_B \tau_{ei}$ (electron magnetisation)
- and the Knudsen parameter λ_{ei}/L_T ($L_T = T/\nabla T$)

Goals:

- Medium-scale experiments with simplified geometries covering a broad range of magnetization and locality levels
- Collect data on broad ranges of plasma parameters to infer transport coefficients (heat transport, B-field advection and diffusion)
- Benchmark the models and simulations, and therefore provide a robust guidance to the experimental design of the larger scale (magnetized) ICF experiments

EUROfusion

Platform for under-dense plasma characterization in the presence of a B-field of up to 20 T

Optical Thomson Scattering (OTS) spectra give access to local plasma parameters

Microphysics of heat transport at LULI Look at thermal transport in gas jets using Thomson scattering

Multiple Thompson Scattering channels yield simultaneously both electronic and ionic spectra

With external B-field up to 20 T (|| laser axis) we could explore:

- $\chi = \omega_B \tau_{ei}$ between 10 and 100
- $\beta = \frac{p_{th}}{p_B}$ between 1 and 30

2D spatial-resolved, time-framed

Microphysics of heat transport at LULI Spectra from non-magnetized shots compared to synthetic spectra

1-10-

8x10-10

6x10⁻¹

4x10⁻¹⁰

2x10-10

6x10⁻¹

5x10⁻¹⁰

4x10⁻¹⁰

3x10⁻¹⁰

2x10⁻¹⁰

1x10⁻¹⁰

Spatially resolved electron spectra at 1 ns - H₂ 14 bars

Both electron and ion synthetic spectra are sensitive to hydro modeling options: flux limiter, probe beam effects...

Rad-hydro simulations with all laser beams

ENR monitoring of 2024 activities, 10 Feb 2025 – J.J. Santos, joao.santos@u-bordeaux.fr

Microphysics of heat transport at LULI Higher densities measurements with solid targets and X-ray absorption

LULI experimental sketch for Feb-March 2025

20 T B-field is expected to strongly modify thermal conductivity

... and therefore the heat diffusion length $l^2 \sim \kappa t/C_V$

Time-resolved X-ray absorption spectra will measure electron temperature at different depths and times, with and w/o the external B-field

 + Laser-plasma instabilities assessed from timeand spectral-resolved Raman and Brillouin backscattered energies

1st year (2024):

D2.1 - Electron energy flux measurements in a broad range of plasma parameters and magnetizations **Two experiments with low density gas jets and B-field up to 20 T provided vast collection of data Extraction of plasma parameters from TS data being improved** (out of equilibrium $f_{\alpha}(\vec{v})$) – presented at IFE workshop at EU-XFEL, June 2024 (P. Loiseau, talk)

2nd year (2025):

- D.2.2 Broaden the scanned parameters with solid targets and explore XFEL probing **Experiment with solid targets and laser-driven X-ray probing** (absorption spectroscopy), Feb-March 2025 at LULI **XFEL experiment** would need \geq 100 J ns laser and B₀ \geq 20 T; being thought of, **realization likely to slide beyond 2025**
- D2.3 Self-consistent simulations of heat transport covering a broad range of the Knudsen Hall parameter space Ongoing with TROLL and Aladin for low-density plasmas case, with benchmarking data from the gas jets experiments
- D2.4 Plasma particle dynamics in highly magnetized plasmas from N-body classical MD simulations

Heat transport modeling through MD and PIC simulations is ongoing

D2.5 - Incorporation of evolved transport models/coefficients to extended-MHD codes and improved simulations of large-scale implosion (laser fusion) experiments

Foreseen improvements on the design, interpretation and predictability of ICF and magnetized ICF experiments and on the modeling of astrophysical plasmas

Requested administrative and budget changes

1st year (2024):

1) Total Res. (Eq./OGS 40% standard) of 83.75 kEUR should be shifted to 2025.

Motivation: The LMJ experiment initially scheduled to 2025 was re-scheduled in 2026-27 by the facility (decision communicated to the users in July 2024). Therefore the target production was shifted from 2024 to 2025.

- 2) Open positions in 2024 at CIEMAT were filled as follows: **Ehret Michael** (CLPU), 2 PM
- Henares José-Luis (CLPU), 2 PM covered by other means than the project budget
- 3) 2024 implementation at NCSRD should be changed to:
- Fitilis Ioannis (HMU), 3 PM (instead of 2.5 PM)
- Vlachos Christos (HMU), 3 PM (instead of 3.5 PM)
- 4) 2024 implementation at CEA :
- Barlow Duncan should be replaced by Caetano de Sousa Meirielen (CNRS), 2 PM.
- 5) 2024 implementation at UKAEA shows a wrong person:
- **Aalto Timo** (I don't even know this person) should be replaced by **Jeremy Chittenden** (2 PM covered by other means than the project budget).

1) Incorporation of **83.75 kEUR in Total Res. (Eq./OGS 40%** standard), shifted from 2024

- 2) Open positions in 2025 at CIEMAT were filled as follows:
- Henares José-Luis (CLPU), 2 PM
- **TBD** (CLPU), 2 PM covered by other means than the project budget
- 3) 2025 implementation at NCSRD should be changed to: - Fitilis Ioannis (HMU), **2.5 PM**
- Tazes Ioannis (HMU), **3.5 PM** (instead of Vlachos Christos)
- 4) 2024 implementation at CEA :
- Barlow Duncan should be replaced by Caetano de Sousa Meirielen (CNRS), 2 PM.
- 5) 2025 implementation at UKAEA shows a wrong person:
- **Aalto Timo** should be replaced by **Jeremy Chittenden** (2 PM covered by other means than the project budget).

Work supported by:

- **EUROfusion consortium** Grant Agreement Nos. 633053 and 101052200
- NNSA/NLUF, USA Grant DE-NA0003940
- **DOE Office of Science, USA** Grant DE-SC0022250
- Lawrence Livermore National Laboratory, USA Contract No. DE-AC52-07NA27344
- Spanish Ministry of Science and Innovation Research Grant No. PID2019-108764RB-I00
- Agence Nationale de la Recherche (ANR), France Project ANR-22-CE30-390 0044
- Investment for the Future Program, IdEx, Université de Bordeaux/GPR LIGHT

Office of Science

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

