







**Enabling Research Project** 

erc

#### High confinement scenarios at positive and negative triangularity in the SMART spherical tokamak

Monitoring of 2024 Activities

E. Viezzer, J. Galdon Quiroga and PSFT, IPP-CAS, NCSRD, CSIC contributors







February 5th 2025



- 1. Overview of the project
- 2. Progress in 2024 and plans for 2025
- 3. Conclusions

#### Outline



#### 1. Overview of the project

- 2. Progress in 2024 and plans for 2025
- 3. Conclusions

# SMall Aspect Ratio Tokamak (SMART)

 SMART: new ST [1,2,3] currently being commissioned at the University of Seville as attractive, fast and economic path to compact fusion reactors

#### SMART's missions include:

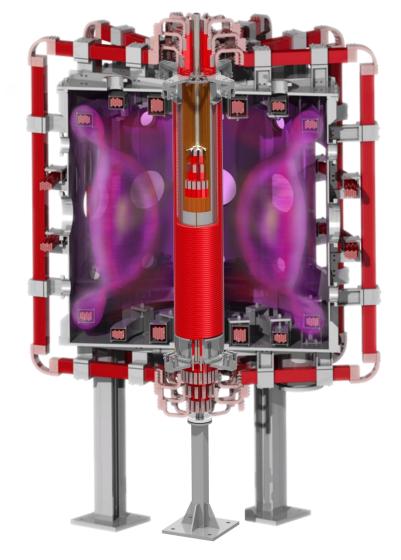
- Study of plasma confinement and stability in positive vs. negative triangularity
- Development of novel diagnostics and plasma control capabilities
- Development of alternative exhaust techniques
- Training of next generation of fusion physicists and engineers

[1] A. Mancini et al., FED 2021[2] S. Doyle et al., FED 2021[3] M. Agredano et al. FED 2021

E. Viezzer, J. Galdon-Quiroga






### **Main parameters of SMART**

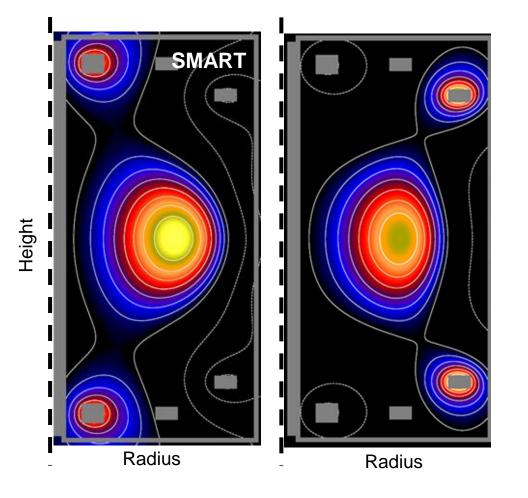
- Vacuum vessel dimensions: 1.6 m (diameter) x 1.6 m (height)
- Solenoid wrapped around 12 toroidal field coils
- 8 poloidal field coils
- Major radius R ~ 0.45 m, minor radius a ~ 0.25 m
- $A = [1.4 3.0], \kappa < 3, \delta = [-0.6, 0.6]$
- 3 operational phases foreseen

| Parameters              | Phase 1 | Phase 2 | Phase 3 |
|-------------------------|---------|---------|---------|
| l <sub>p</sub> [kA]     | 100     | 200-500 | >500    |
| B <sub>t</sub> [T]      | 0.1     | 0.4     | 1.0     |
| т <sub>pulse</sub> [ms] | 150     | 500     | >1000   |
| P <sub>ECRH</sub> [kW]  | 6       | 6       | 200     |
| P <sub>NBI</sub> [MW]   | -       | ≤1      | 1       |

[D.Cruz-Zabala et al., NF 2024]






#### Initial diagnostic coverage



|                         | Diagnostic Method               | Measurement                                                |
|-------------------------|---------------------------------|------------------------------------------------------------|
|                         | Rogowski Coil                   | I <sub>plasma</sub> , I <sub>coils</sub>                   |
| Magnetic<br>Diagnostics | Mirnov Coil                     | Β, δΒ                                                      |
|                         | Flux Loop                       | Ψ                                                          |
|                         | Diamagnetic loop                | δΦ                                                         |
|                         |                                 | Line integrated n <sub>e</sub>                             |
|                         | Thomson Scattering <b>OPPPL</b> | n <sub>e</sub> (r), T <sub>e</sub> (r)                     |
| Optical<br>Diagnostics  | Passive radiation               | Radiated power, low-f instabilities, impurity monitor      |
|                         | Gas puff based CXRS             | T <sub>i</sub> (r), v <sub>i</sub> (r), n <sub>i</sub> (r) |
|                         | Fast camera (Phantom v2512)     | Discharge monitor                                          |

#### High level objectives of ENR project

- Equip SMART with NBI system to reach fusion relevant temperatures and achieve high confinement modes
- Implement interferometry and poloidal array of gas-puff CXRS to characterize the new scenario in negative triangularity
- Exploit new capabilities with dedicated experiments and simulations





#### **Project organization**



| No     | Title                        | Description                                                                                                                 | Expected date           |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
|        |                              | WP PGP-CXRS                                                                                                                 |                         |
|        |                              | . Viezzer (US), D. J. Cruz-Zabala (US), J. Ayllon-Guerola (US), Po<br>anchis (US), G. Pellegrini (CSIC)                     | ostdoc 1 (US), R. Lopez |
| 1      | CX_M1                        | Design of GP-CXRS system (geometry, optics, detector)                                                                       | 2024. Jun.              |
| 2      | CX_M2                        | Construction of GP-CXRS system                                                                                              | 2024. Oct.              |
| 3      | CX_M3                        | Installation in SMART                                                                                                       | 2024. Dec.              |
| 4      | CX_M4                        | Commissioning of GP-CXRS at SMART                                                                                           | 2025. Jun.              |
| 5      | CX_M5                        | First measurements of PGP-CXRS in NT and PT plasmas                                                                         | 2026. Dec.              |
|        |                              | WP Interferometry                                                                                                           |                         |
| Key    | Personnel: N                 | M.Varavin (IPP-CAS), V.Ivanov (IPP-CAS), D.Kekrt(IPP-CAS);                                                                  | J.Galdon-Quiroga (US)   |
| J.Sala | as-Suarez (US                | 6), J.Ayllon-Guerola (US), Technician #1 (US), ), G. Pellegrini (CS                                                         | IC)                     |
| 1      | IF_M1                        | Development of simulation tools and design                                                                                  | 2024. Apr.              |
| 2      | IF_M2                        | Laboratory tests at SMART                                                                                                   | 2024. July              |
| 3      | IF_M3                        | Installation in SMART                                                                                                       | 2024. Dec.              |
| 4      | IF_M4                        | Commissioning of IF at SMART                                                                                                | 2025. Jun.              |
| 5      | IF_M5                        | RT measurements and integration in DCS                                                                                      | 2025. Dec.              |
| 6      | IF_M6                        | Feasibility study of SDR technology                                                                                         | 2025. Dec.              |
|        |                              | WP NBI                                                                                                                      |                         |
| -      |                              | 1.Garcia-Munoz (US), Postdoc #2 (US), Technician #1 (US), J. A<br>gar(IPP), S.Fukova (IPP), I.Mysiura (IPP), J.Varju (IPP). | Ayllon (US), J. Gonzale |
| 1      | NBI_M1                       | Transport of components to SMART site.                                                                                      | 2024. April             |
| 2      | NBI_M2                       | Unpacking and assembling of NBI system                                                                                      | 2024. Jun.              |
| 3      | NBI_M3                       | Testing of subsystems and troubleshooting of NBI                                                                            | 2025. Nov.              |
| 4      | NBI_M4                       | Conditioning of NBI to reach operation parameters                                                                           | 2025. May               |
| 5      | NBI_M5                       | Training of US operators                                                                                                    | 2025. December          |
|        |                              | WP EXP                                                                                                                      |                         |
| Key    | Personnel:                   | E.Viezzer (US), J.Galdon-Quiroga (US), M.Garcia-Munoz (US                                                                   | 6), D.Cruz-Zabala (US)  |
|        | doc #1 (US),<br>grini (CSIC) | Postdoc #2 (US), J.Salas-Suarez (US), R. Lopez Cansino (US                                                                  | i), J. Gonzalez (US), G |
| 1      | EXP_M1                       | Development of NT and PT ohmic plasmas in SMART                                                                             | 2025. Jun.              |
| 2      | EXP_M2                       | Verification of plasma stability                                                                                            | 2025. Jul.              |
| 3      | EXP_M3                       | Development of NBI heated plasmas                                                                                           | 2025. Dec.              |
| 4      | EXP M3                       | Comparison of NBI vs ohmically heated plasmas                                                                               | 2025. Dec.              |

| <u> </u> | ·                                                                                                     |                                                             | ·           |
|----------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
|          | WP MOD                                                                                                |                                                             |             |
| Key P    | Key Personnel: L.Sanchis-Sanchez (US), M.Toscano (US), Postdoc #2 (US), Y.Kominis (UA), G.Anastassiou |                                                             |             |
| (US),    | (US), P.Zestanakis (UA), D. Cruz-Zabala (US), M. Garcia Muñoz (US), J. Galdon (US), E. Viezzer (US)   |                                                             |             |
| 1        | MOD_M1                                                                                                | Extension of resonance reduced model for low aspect ratio   | 2024. Dec.  |
| 2        | MOD_M2                                                                                                | Implementation of resonance model in ASCOT                  | 2024. Dec.  |
| 3        | MOD_M3                                                                                                | Implementation of SMART NBI in TRANSP                       | 2024. Jun.  |
| 4        | MOD_M4                                                                                                | Predictive TRANSP modelling of PT and NT plasmas in SMART   | 2024. Dec.  |
| 5        | MOD_M5                                                                                                | Benchmark resonance model with ASCOT                        | 2025. Jul.  |
| 6        | MOD_M6                                                                                                | Predictive simulations of resonances in support of NBI ops. | 2025. Sept. |
| 7        | MOD_M7                                                                                                | Predictive TRANSP modelling of NBI heated plasmas in        | 2025. Oct.  |
|          |                                                                                                       | SMART                                                       |             |
| 8        | MOD_M8                                                                                                | Intrepretive transport analysis and comparison of NT vs PT  | 2025. Dec.  |

- Project divided in 3 Research lines and 5 Work Packages (WPs)
- Research Line 1: Instrumentation
  - WP1: PGP-CXRS
  - WP2: Interferometry
  - WP3: NBI
- Research Line 2: Experiments
  - WP4: EXP
- Research line 3: Modelling
  - WP5: MOD

#### Outline



1. Overview of the project

#### 2. Progress in 2024 and plans for 2025

#### 3. Conclusions

#### **Current status of SMART**

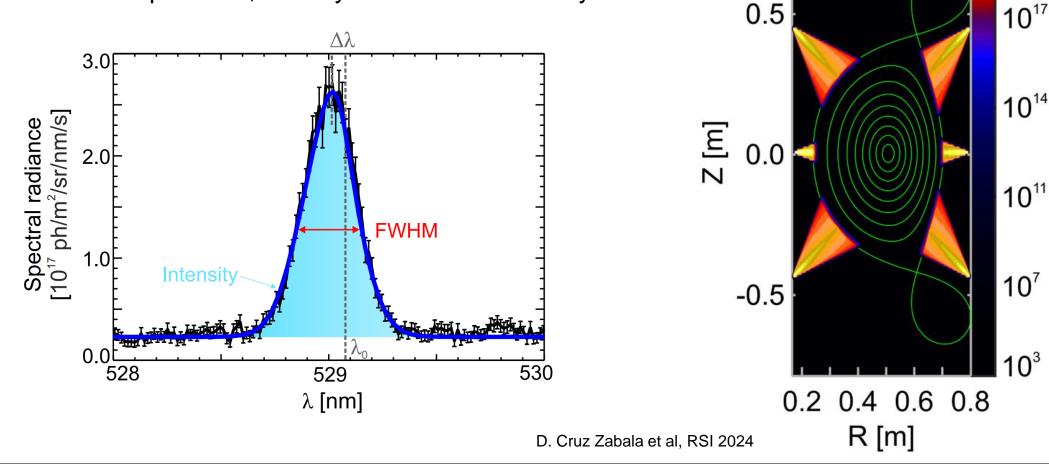
- Phase I: Commissioning
  - Vacuum system
  - TF, PF and DIV coils
  - Solenoid
  - Baking system (ongoing)
  - Diagnostics (ongoing): magnetics, fast-camera, CXRS, …
- First solenoid induced plasma achieved!
  - (Dec. 2024)







# WP1: PGP - CXRS




10<sup>20</sup>

 $n_0[1/m^2]$ 

SMART

 SMART PGP-CXRS diagnostic: array of fast piezo valves that inject neutral gas to study impurity asymmetries and measure their temperature, density and rotation velocity

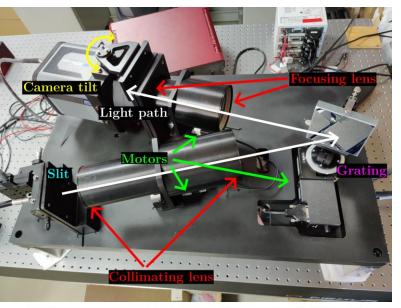


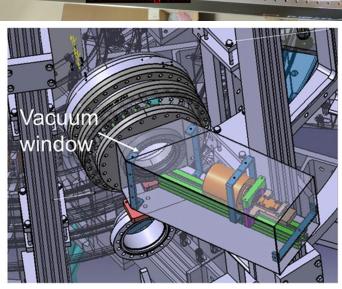
#### ENR.TEC.02.CIEMAT – Monitoring of 2024 activities

#### Progress in 2024:

- Manufacturing completed
- Lab tests & final calibration completed

SMART PGP-CXRS diagnostic: array of fast


piezo valves that inject neutral gas to study


impurity asymmetries and measure their

temperature, density and rotation velocity

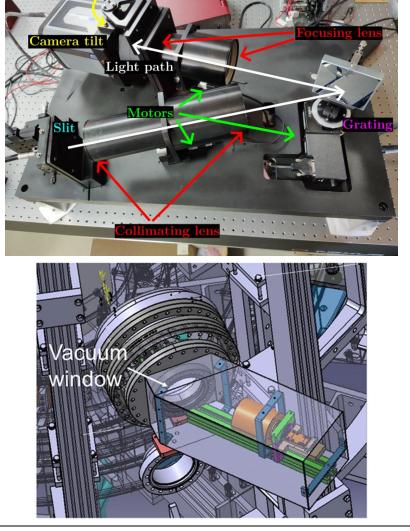
Design and signal estimations published:
 D.J.Cruz-Zabala et al, RSI 2024

12








# WP1: PGP - CXRS

### WP1: PGP - CXRS

- SMART PGP-CXRS diagnostic: array of fast piezo valves that inject neutral gas to study impurity asymmetries and measure their temperature, density and rotation velocity
- Progress in 2024:
  - Manufacturing completed
  - Lab tests & final calibration completed
  - Design and signal estimations published: D.J.Cruz-Zabala et al, RSI 2024
- Next steps:
  - Installation in SMART in next vessel opening

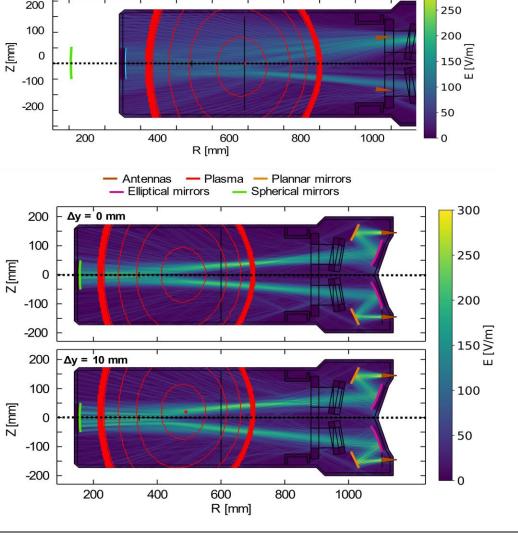






#### E. Viezzer, J. Galdon-Quiroga

#### **WP2: Interferometer**


- SMART interferometer
  - 2mm microwave interferometer from COMPASS
  - Vertical → Radial chord
  - Beam focussing system



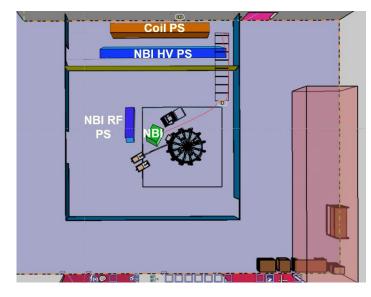


### **WP2: Interferometer**

- SMART interferometer
  - 2mm microwave interferometer from COMPASS
  - Vertical → Radial chord
  - Beam focussing system
- Progress in 2024:
  - Lab tests at IPP-CAS competed
  - Beam focussing system design completed.
    Procurement on-going
  - Loan agreement with IPP-CAS on-going
- Next steps
  - Installation in SMART.
  - Commissioning of the focussing system



- Plasma - Spherical mirrors


— Antennas



300

### WP3: NBI

- SMART NBI:
  - On loan from IPP-CAS
  - H & He operation. Power ~ 300 kW.
    Injection energy ~ 25-30 keV
- Progress in 2024:
  - Continuous iterations between PSFT & IPP-CAS for implementation at SMART (infrastructure, CAD, transfer, radiation safety, ...)
  - SMART team visit to IPP-CAS.
    - NBI lab tests. SMART team instructed
- Next steps:
  - Transfer to SMART expected in March 2025
  - IPP-CAS team visit for NBI commissioning





WP4: EXP

Scope: experiments for

First NT vs PT plasmas

First NBI heated plasmas

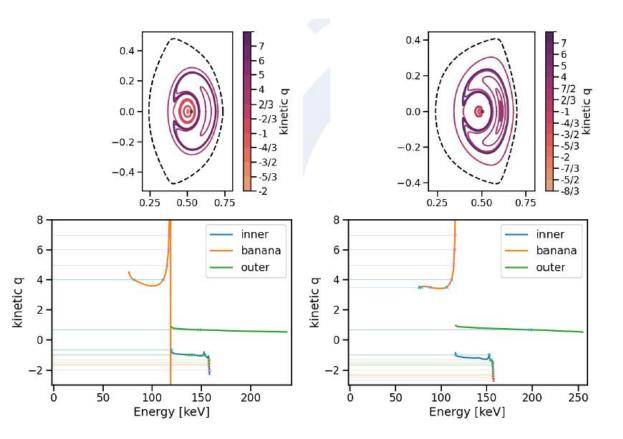
No activities were foreseen for 2024

Verification of plasma stability

- First physics operations expected in 2025
  - Development of PT and NT shaped scenarios
  - Characterize PT and NT Ohmic plasmas
  - Characterize PT and NT NBI heated plasmas



### **WP5: Modelling**



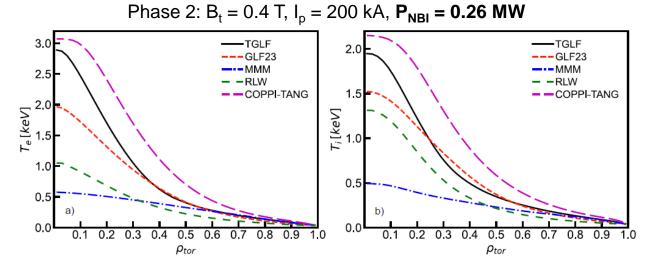

#### Scope:

- Fast-ion resonance index model (RIM) in support of NBI operations and fast-ion physics
- Predictive TRANSP modelling, including NBI, in support of operations

#### WP5: Modelling

- Scope:
  - Fast-ion resonance index model (RIM) in support of NBI operations and fast-ion physics
  - Predictive TRANSP modelling, including NBI, in support of operations
- Progress in 2024 Resonance Index Model
  - Extended to low aspect ratio geometries.
    Benchmark with ASCOT (on-going)
  - Comparison between PT and NT configurations (on-going)
- Next steps:
  - Finalize benchmark with ASCOT
  - Predictive simulations for NBI ops.






# **WP5: Modelling**



- Scope:
  - Fast-ion resonance index model (RIM) in support of NBI operations and fast-ion physics
  - Predictive TRANSP modelling, including NBI, in support of operations
- Progress in 2024 TRANSP
  - NBI implemented for SMART in TRANSP.
  - Predictive simulations for Phase 2&3 comparing different transport models [D.J.Cruz-Zabala et al., NF 2024]
- Next steps:
  - Interpretive TRANSP analysis and comparison of PT vs NT

2.00 TGLF 1.75 ---GLF23 ---GLF23 0.0 --- MMM --- MMM 1,50 RLW – – RLW 0.5 COPPI-TANG COPPI-TANG 1.25 1.00 1.00 T<sub>i</sub>[keV] 0.7 0. 0.50 0.25 0. 0.00 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9  $\rho_{tor}$  $\rho_{tor}$ 



 $B_t = 0.4 \text{ T}, I_p = 200 \text{ kA}, \text{ Ohmic}$ 

#### Where are we?



| No    | Title                          | Description                                                                                                                 | Expected date          |
|-------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|
|       |                                | WP PGP-CXRS                                                                                                                 |                        |
| -     |                                | Viezzer (US), D. J. Cruz-Zabala (US), J. Ayllon-Guerola (US), Pos<br>anchis (US), G. Pellegrini (CSIC)                      | stdoc 1 (US), R. Lopez |
| 1     | CX_M1                          | Design of GP-CXRS system (geometry, optics, detector)                                                                       | 2024. Jun.             |
| 2     | CX_M2                          | Construction of GP-CXRS system                                                                                              | 2024. Oct.             |
| 3     | CX_M3                          | Installation in SMART                                                                                                       | 2024. Dec.             |
| 4     | CX_M4                          | Commissioning of GP-CXRS at SMART                                                                                           | 2025. Jun.             |
| 5     | CX_M5                          | First measurements of PGP-CXRS in NT and PT plasmas                                                                         | 2026. Dec.             |
|       |                                | WP Interferometry                                                                                                           |                        |
| Key   | Personnel: N                   | 1.Varavin (IPP-CAS), V.Ivanov (IPP-CAS), D.Kekrt(IPP-CAS); J.                                                               | Galdon-Quiroga (US),   |
| J.Sal | as-Suarez (US)                 | ), J.Ayllon-Guerola (US), Technician #1 (US), ), G. Pellegrini (CSIC                                                        | :)                     |
| 1     | IF_M1                          | Development of simulation tools and design                                                                                  | 2024. Apr.             |
| 2     | IF_M2                          | Laboratory tests at SMART                                                                                                   | 2024. July             |
| 3     | IF_M3                          | Installation in SMART                                                                                                       | 2024. Dec.             |
| 4     | IF_M4                          | Commissioning of IF at SMART                                                                                                | 2025. Jun.             |
| 5     | IF_M5                          | RT measurements and integration in DCS                                                                                      | 2025. Dec.             |
| 6     | IF_M6                          | Feasibility study of SDR technology                                                                                         | 2025. Dec.             |
|       |                                | WP NBI                                                                                                                      |                        |
|       |                                | .Garcia-Munoz (US), Postdoc #2 (US), Technician #1 (US), J. Ay<br>gar(IPP), S.Fukova (IPP), I.Mysiura (IPP), J.Varju (IPP). | llon (US), J. Gonzalez |
| 1     | NBI_M1                         | Transport of components to SMART site.                                                                                      | 2024. April            |
| 2     | NBI_M2                         | Unpacking and assembling of NBI system                                                                                      | 2024. Jun.             |
| 3     | NBI_M3                         | Testing of subsystems and troubleshooting of NBI                                                                            | 2025. Nov.             |
| 4     | NBI_M4                         | Conditioning of NBI to reach operation parameters                                                                           | 2025. May              |
| 5     | NBI_M5                         | Training of US operators                                                                                                    | 2025. December         |
|       |                                | WP EXP                                                                                                                      |                        |
| Key   | Personnel: E                   | .Viezzer (US), J.Galdon-Quiroga (US), M.Garcia-Munoz (US),                                                                  | D.Cruz-Zabala (US),    |
|       | :doc #1 (US),<br>egrini (CSIC) | Postdoc #2 (US), J.Salas-Suarez (US), R. Lopez Cansino (US),                                                                | J. Gonzalez (US), G.   |
| 1     | EXP_M1                         | Development of NT and PT ohmic plasmas in SMART                                                                             | 2025. Jun.             |
| 2     | EXP_M2                         | Verification of plasma stability                                                                                            | 2025. Jul.             |
| 3     | EXP_M3                         | Development of NBI heated plasmas                                                                                           | 2025. Dec.             |
| 4     | EXP M3                         | Comparison of NBI vs ohmically heated plasmas                                                                               | 2025. Dec.             |

|         |                                                                                                       | · · · · · · · · · · · · · · · · · · ·                       |             |
|---------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
|         | WP MOD                                                                                                |                                                             |             |
| Key P   | Key Personnel: L.Sanchis-Sanchez (US), M.Toscano (US), Postdoc #2 (US), Y.Kominis (UA), G.Anastassiou |                                                             |             |
| (US), I | (US), P.Zestanakis (UA), D. Cruz-Zabala (US), M. Garcia Muñoz (US), J. Galdon (US), E. Viezzer (US)   |                                                             |             |
| 1       | MOD_M1                                                                                                | Extension of resonance reduced model for low aspect ratio   | 2024. Dec.  |
| 2       | MOD_M2                                                                                                | Implementation of resonance model in ASCOT                  | 2024. Dec.  |
| 3       | MOD_M3                                                                                                | Implementation of SMART NBI in TRANSP                       | 2024. Jun.  |
| 4       | MOD_M4                                                                                                | Predictive TRANSP modelling of PT and NT plasmas in SMART   | 2024. Dec.  |
| 5       | MOD_M5                                                                                                | Benchmark resonance model with ASCOT                        | 2025. Jul.  |
| 6       | MOD_M6                                                                                                | Predictive simulations of resonances in support of NBI ops. | 2025. Sept. |
| 7       | MOD_M7                                                                                                | Predictive TRANSP modelling of NBI heated plasmas in        | 2025. Oct.  |
|         |                                                                                                       | SMART                                                       |             |
| 8       | MOD_M8                                                                                                | Intrepretive transport analysis and comparison of NT vs PT  | 2025. Dec.  |

#### • WP GP-CXRS: on track

- WP IF: transport to SMART delayed. Good progress with focussing system design.
- WP NBI: transport to SMART delayed. But good progress being achieved.
- WP EXP: -
- WP MOD: on track

E. Viezzer, J. Galdon-Quiroga

#### Outline



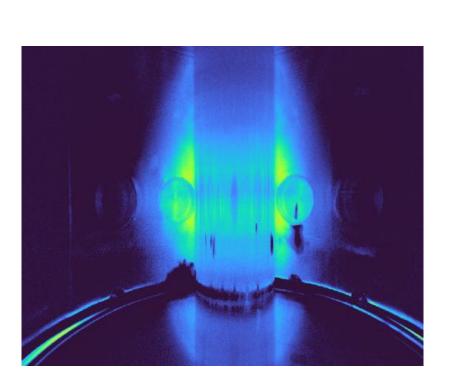
- 1. Overview of the project
- 2. Progress in 2024 and plans for 2025
- 3. Conclusions

#### **Progress towards scientific deliverables**



| Year | Description                                                                            | Risk    |
|------|----------------------------------------------------------------------------------------|---------|
| 2024 | Installation of interferometry diagnostic in SMART                                     | Low     |
| 2024 | Installation of poloidal array of gas-puff CXRS diagnostic in SMART                    | Low     |
| 2024 | Extension of reduced model for resonant transport to small aspect ratio geometry       | Low     |
| 2024 | Implementation of complete SMART geometry (including NBI) in TRANSP                    | Low     |
|      |                                                                                        |         |
| 2025 | Commissioning of upgraded interferometer diagnostic in SMART                           | Medium  |
| 2025 | First 2D maps of ion temperature, impurity density and rotation in spherical tokamak   | Medium  |
|      | plasmas: comparison of NT vs PT                                                        |         |
| 2025 | Installation of the NBI system in SMART                                                | Medium  |
| 2025 | Analysis of thermal and fast-ion resonances in NT vs PT in small aspect ratio plasmas. | Low     |
| 2025 | Comparison of performance of NT vs PT plasmas in SMART                                 | Medium  |
| 2025 | First NBI heated plasmas in SMART                                                      | Medium- |
|      |                                                                                        | High    |

- **2024**:
  - SD3 & 4 achieved (SD 4 published in NF, SD3 to be published when completed)
  - SD1 & 2 delayed, but will be achieved in 2025 (systems ready, just pending installation). Low risk.


### **Overview of publications / conferences**



- D.Cruz-Zabala et al., "Performance prediction applying different reduced turbulence models to the SMART tokamak", Nucl. Fusion 64 126071 (2024)
- E.Viezzer et al., "Diagnostics overview for the first experimental campaign at the SMART spherical tokamak", European Physics Society Conference (2024)
- E.Viezzer et al., "Diagnostics overview for the first experimental campaign of SMART", International Spherical Torus Workshop (2024)
- J.Salas et al., "Preparation of unambiguous mm-wave interferometer for the SMART tokamak", International Spherical Torus Workshop (2024)
- J.Salas et al., "Microwave diagnostics in SMART", submitted to European Conference on Plasma Diagnostics (2025)
- A.Rodriguez Gonzalez et al, "Commissioning and first measurements of the visible light diagnostics of the SMART tokamak", submitted to ECPD 2025
- D.J.Cruz-Zabala et al., "Achievements and challenges of the first experimental campaign at the SMall Aspect Ratio Tokamak (SMART)", submitted to Symposium of Fusion Energy (2025)
- More to come ...

#### Conclusions

- First solenoid induced plasma achieved in SMART
- Regular reporting and dedicated team meetings
- Good overall progress of project deliverables
- Main inconvenience: delay in transport of NBI and Interferometer from IPP-CAS to SMART site. Loan agreements signed → Systems expected soon at SMART





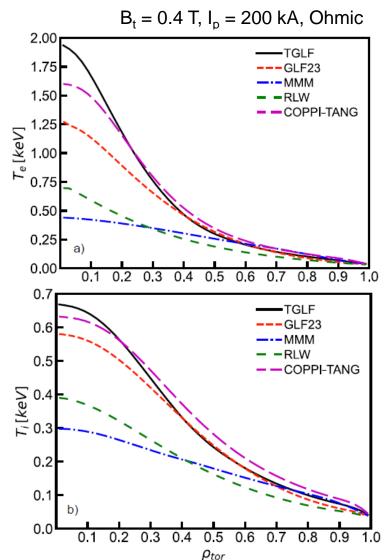


#### **Backup slides**

#### Status of SMART

- Power supplies currently being commissioned
  - Solenoid, PF coils, DIV coils done
  - TF coils: currently under commissioning, fine-tuning of filters to avoid ripple
- Diagnostics:
  - see talks by A. Rodriguez, J. Salas
  - Magnetics (not covered by ENR) ready to be installed
- NBI (see talk by F. Puentes): loan agreement ready to be signed






# Temperature profiles have been predicted using different turbulence models in PT



- Models that have been tested:
  - TGLF: Trapped Gyro-Landau Fluid [1]
  - GLF23: Gyro-Landau Fluid [2]
  - RLW: Rebut-Laila-Watkins [3]
  - MMM: Multi-Mode model [4]
  - CDBM: Current Diffusive Ballooning Mode [5]
- In STs with high  $v^*$  and  $\beta_e$ , micro tearing modes (MTM) might be important [6]
- **RLW** and **MMM**, which are the models that include MTM, are the most pessimistic ones
- In these simulations  $n_{GW} \sim 30\%$ ,  $T_{e,sep}$  and  $T_{i,sep}$  are fixed to 30 eV and rotation is neglected

[1] G. M. Staebler et al., PoP, 2007[4] T. Rafiq et al., PoP, 2021[2] R. E. Waltz et al., PoP, 1997[5] A. Fukuyama et al., PPCF, 1999[3] P. H. Rebut, et al. 12th IAEA Fusion Conf., 1988[6] S. M. Kaye et al., PoP, 2014



E. Viezzer, J. Galdon-Quiroga

# NBI has been implemented in TRANSP to predict phase 2 and phase 3 plasmas

- NBI from COMPASS has been optimized for SMART:
  - E<sub>inj</sub> = 25 keV
  - P<sub>NBI</sub> = 0.26 MW
  - R<sub>tan</sub> = 0.44 m
- MMM provide similar temperatures compared to GLOBUS-M2
- TGLF clearly underestimates electron and ion turbulent transport
- Including rotation enhances predicted temperatures, as expected

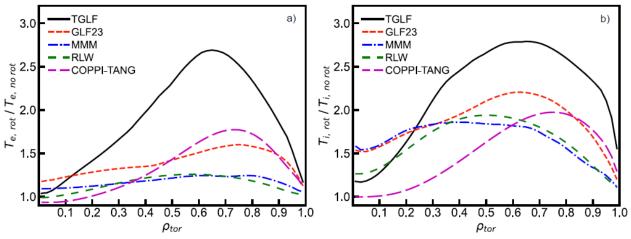
0.0

0.1

0.2 0.3 0.4

0.5 0.6 0.7

 $\rho_{tor}$ 


# Phase 2: $B_t = 0.4 \text{ T}, I_p = 200 \text{ kA}, P_{\text{NBI}} = 0.26 \text{ MW}$ ized $3.0 \\ 2.0 \\ 2.0 \\ 1.5 \\ 0.0 \\ 1.5 \\ 0.0 \\ 1.0 \\ 0.0 \\ 1.5 \\ 0.0 \\ 1.0 \\ 0.0 \\ 1.0 \\ 0.0 \\ 1.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\$

0.8 0.9

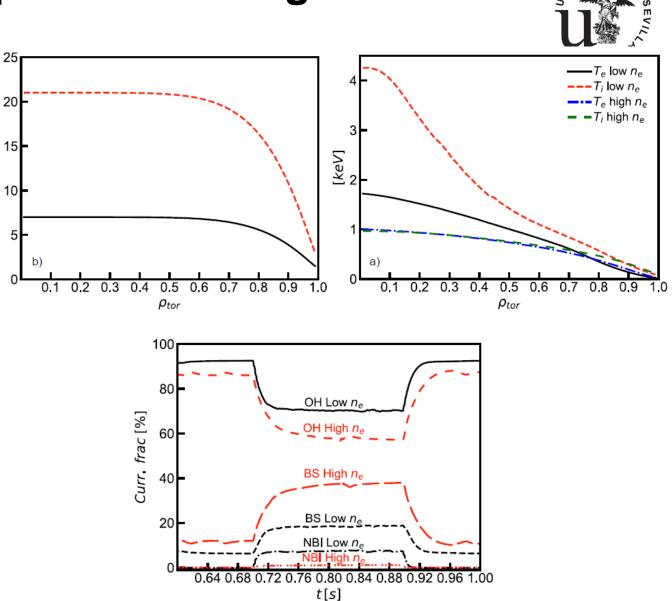
Ratio between predicted temperaturas w. rotation / w.o. rotation

0.1

0.2 0.3 0.4






0.6

 $\rho_{tor}$ 

# Phase 3 scenario has been predicted using the MMM model

 $\eta_{e} [10^{19} m^{-3}]$ 

- $B_t = 1T$ ,  $I_p = 0.5$  MA,  $P_{NBI} = 1MW$
- n<sub>GW</sub> of 25% and 75% have been considered
- n<sub>GW</sub> = 25% shows similar properties of a GLOBUS-M2 plasma
- n<sub>GW</sub> = 75% shows high confinement β
  = 3.8
- Large contribution of the BS current →
  longer plasma discharges

