

Marcelo Baquero-Ruiz, 5 February 2025

EPFL Outline

- 1. Overview
- 2. Status of tasks
- 3. Issues
- 4. Planning for 2025

marcelo.baquero@epfl.ch

Outline

- 1. Overview
- 2. Status of tasks
- 3. Issues
- 4. Planning for 2025

Overview: Objective

Obtain **single laser-pulse** measurements of H densities in a dense hydrogen plasma using fs-TALIF.

We will provide an assessment on the feasibility of this method.

Overview: Schematic of project

Overview: Proposed tasks (all)

Experiments in RAID (fs TALIF in H plasmas).

T1	 Upgrade Astrella sys 	c generator (FHG) for fs laser at LACUS. stem to deliver required fs pulses at ≈820 nm. and spectrum of 205 nm (UV) pulses – notably their stability.	
T2	Set up fluorescence	detection system.	
ТЗ	•	am-path for fs UV pulses. sor to compensate for dispersion of pulses during propagation	
T4	Test calibration meth	Test calibration method using Kr gas with laser tuned for H.	
T5	 Understand the theo Study n=3 substate 	ry of fs laser absorption. mixing.	

Texp

Overview: Proposed tasks (2024)

T1	•	Build fourth-harmonic generator (FHG) for fs laser at LACUS. Upgrade Astrella system to deliver required fs pulses at ≈820 nm. Characterize energy and spectrum of 205 nm (UV) pulses – notably their stability.
T2	Set up fluorescence detection system.	
ТЗ	•	Design and build beam-path for fs UV pulses. Build pulse compressor to compensate for dispersion of pulses during propagation and injection.

- Understand the theory of fs laser absorption.
 - Study n=3 substate mixing.

Status of 2024 Tasks

- Build fourth-harmonic generator (FHG) for fs laser at LACUS.
 - Upgrade Astrella system to deliver required fs pulses at ≈820 nm.
 - Characterize energy and spectrum of 205 nm (UV) pulses notably their stability.
- Set up fluorescence detection system.
- T3 Design and build beam-path for fs UV pulses.
 - Build pulse compressor to compensate for dispersion of pulses during propagation and injection.

- Understand the theory of fs laser absorption.
 - Study n=3 substate mixing.

Statement of progress (as of Feb. 2025)

All major milestones proposed for 2024 were reached.

fs-TALIF project is on track for completion within the originally proposed time frame.

Some obstacles have been encountered that do not have (for the moment) a major impact on the schedule.

marcelo.baquero@epfl.ch

EPFL Outline

- 1. Overview
- 2. Status of tasks
- 3. Issues
- 4. Planning for 2025

EPFL

T1: M1 and M4 FHG module and Astrella upgrade

- FHG module is operational.
- Conversion efficiency (≈1.1%) slightly lower than target (2%) but sufficient for experiments.
- Astrella system upgraded to 1kHz rep-rate, 7 mJ per pulse at 820 nm, pulse duration < 100 fs.

EPFL T1: M3

Characterization of UV fs pulses

Stable UV pulse energies of
 ≈ 80µJ

 Stable spectral features and FWHM bandwidth ≈ 0.5nm

EPFL T2: M7

Fluorescence detection

 System based on imaging optics, optical filtering and a very short (down to ~1ns) gating time ICCD camera.

EPFL T3: M5 and M6

Design and construction of beam-path

T3: Pulse compressor

- Optical system composed of two prisms to change laser pulse time envelope so that any dispersion along the beampath is precompensated.
- Prisms have been procured but have not been installed nor tested yet.

EPFL

T5: M2

Theoretical studies of laser pulse absorption

- Extremely important to determine validity of models to interpret TALIF data.
- Discussion at FLTPD-2024 conference and recent works show that standard assumptions may not be valid in the fs regime.
- Exploring feasibility of using simulations of H subject to intense fs fields (possible collaborations).

EPFL T5: M8

Theoretical studies of n=3 substate mixing

- Possible effect of ion collisions.
- Ongoing studies to check applicability of models to RAID plasma conditions.

marcelo.baquero@epfl.ch

Outline

- 1. Overview
- 2. Status of tasks
- 3. Issues
- 4. Planning for 2025

EPFL Issues

- 1. Astrella system is currently **not** operational.
 - Laser stopped in December due to a defective component.
 - Servicing is scheduled for February. Repair of component should last ~1 month.
 - Transport from LACUS to SPC is planned during that time to reduce impact on project schedule.
- 2. Refractive optics (windows and lenses) may absorb a significant fraction (up to ~10%) of the laser power for the large intensities sought in this project.
 - Characterization of absorption will resume when Astrella is available.
- 3. Heating of RAID chamber may affect (slightly) alignment of final parts of beampath.

Outline

- 1. Overview
- 2. Status of tasks
- 3. Issues
- 4. Planning for 2025

EPFL

EPFL

Tasks for 2025

T5	 Continue studies on theory of fs laser absorption. Continue studies on n=3 substate mixing. 	All 2025
	Transport Astrella and FHG from LACUS to SPC	March
Т3	Install pulse compressor at output of FHG.	April
T4	 Test calibration method using Kr gas with laser tuned for H. (Although originally planned at LACUS, this will be done at SPC.) 	April
_	 Inject UV laser into beampath and perform alignment. Characterize fs pulses arriving in RAID 	May
Texp	First experiments in RAID (fs TALIF in H plasmas).	June
	Review of first experimental data	August
	Experiments in RAID	October
	 Analysis to reach conclusion on feasibility of fs-TALIF measurements in tokamaks. 	December

Thanks for your attention

