
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via
the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the European Commission can be held responsible for them.

David Coster

Using the IMAS Persistent Actor Framework
for implementing the European Transport
Simulator

ETS plansMAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | David Coster | 2024-12-09 1

● Why IMAS?
● What can the Data Management Plan provide?
● What is the Persistent Actor Framework?
● What is the European Transport Simulator?
● What can we do with the ETS-PAF?

2

Outline

IMAS is the Integrated Modelling and Analysis Suite being developed at ITER and uses the Interface Data
Structure (IDS) as the basic unit of data interchange or storage.
Versions exist for various physics “objects”:
● equilibrium
● core_profiles
● summary
● ec_launchers
● camera_visible

This provides a standard way of storing and accessing tokamak and stellarator data with a well defined
ontology

Ref: https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/sphinx/4.0/index.html

3

What is IMAS

https://sharepoint.iter.org/departments/POP/CM/IMDesign/Data%20Model/sphinx/4.0/index.html

The Data Management Plan is a project within EUROfusion [https://wiki.euro-fusion.org/wiki/DMP]
The project aims at establishing the team of computer and data experts for implementing the Data Management Plan (DMP) as it
was agreed by the 40th EUROfusion General Assembly.

The design and main elements of the proposed infrastructure are described in the DMP blueprint.
The data management plan defines 4 scenarios of increasing ambition in terms of data access and F.A.I.R.ness (Findable, Accessible,
Interoperable and Reusable):

● Scenario A: making metadata only available and searchable using IMAS data subsets for interoperable definitions of quantities
[F,(I)];

● Scenario B: adds to Scenario A by allowing a subset of the data to be accessed using common tools (for example UDA). Facilities
are responsible for the access level and qualification of data through the data mappings [F,A,I,(R)];

● Scenario C: builds on the previous stages and allows for enhanced data provenance and referencing through PID’s [F,A,I,R].
● Scenario D: adds a lightweight layer for open access to non-embargoed metadata and where allowed by the facilities also data

access for export in human readable formats (CSV files) [F,A,I,R] and open.

It is decided to implement in 2023-2025 the scenario A fully and to prepare for the implementation of scenario B (prototype level).
The infrastructure should be built on the Fair for Fusion provided software tools and developed practices and it is expected that the portal
interface and development activities will be hosted on the Gateway where additional virtual machines will be made available for the effort.
The documentation, software and ticketing tools should be integrated with the existing PSNC based gitlab and Jira services.

Further development will depend on the outcome of these initially implemented activities and will be decided at a later stage.

4

What can the Data Management Plan provide?

https://wiki.euro-fusion.org/wiki/DMP
https://ims.euro-fusion.org/fp9/Attachment/DownloadData?aAttachmentId=50745

https://dmp.eufus.psnc.pl/dashboard/

Prototype – full system with “summary” data from AUG, TCV, WEST,
JET, MAST(-U) on the new Gateway (whenever it arrives)

Can be used to search for data with desired properties …

5

DMP: Scenario A

https://dmp.eufus.psnc.pl/dashboard/

● Provide access to data from the experiments
○ Processed data: core_profiles, equilibrium, …
○ Diagnostic data

● For AUG data
○ Processed data

■ Run “trview” from Giovanni Tardini
■ I transfer the produced IDS HDF5 files to “uda.ipp.mpg.de”
■ Data can then be accessed from outside

● Implementation of “Authentication and Authorization” under
development

■ 'imas://uda.ipp.mpg.de:56565/uda?path=/root/public/imasdb
/aug/3/17151/1&backend=hdf5' provides ['core_profiles',
'dataset_description', 'equilibrium', 'ic_antennas', 'nbi',
'pulse_schedule', 'summary', 'tf', 'wall']

○ Diagnostic data
■ Produce IDSes using various codes
■ I transfer the produced IDS HDF5 files to “uda.ipp.mpg.de”
■ Will move to dynamic UDA later
■ 'imas://uda.ipp.mpg.de:56565/uda?path=/root/public/imasdb

/aug/3/17151/3&backend=hdf5' provides ['equilibrium',
'magnetics', 'pf_active', 'tf', 'wall']

6

DMP: Scenario B

● A concept from ITER based on the MUSCLE3 framework
○ “The third major version of the MUltiScale Coupling Library and

Environment”
○ https://github.com/multiscale/muscle3 (open source)

● While MUSCLE3 allows for a range of data to be exchanged between
“actors”, the Persistent Actor Framework restricts the data to be
exchanged to be IDSes

● Allows one to easily build a workflow based on communicating
independent programs (“actors”)
○ Supports actors in fortran, c++, python

● The iWrap tool is available to prepare existing fortran or c++ codes for
use in PAF workflows (though this can also be done manually)

● The actors can remain alive through the whole workflow
○ Can remember previous state

7

What is the Persistent Actor Framework?

https://github.com/multiscale/muscle3

● Started with a fortran only workflow using CPOs
○ Implemented MMS

● Implemented the full workflow in Kepler (using CPOs)
○ Still used ETS-5

● Re-implemented the full Kepler workflow to use IDSs
○ Production ETS-6

● Two, in development, versions using Python
○ Object oriented ETS workflow (ETSpy) (Rui Coelho)
○ ETS-PAF, using MUSCLE3 / Persistent Actor Framework (David Coster)

8

What is the ETS?

● Need to move away from Kepler
○ Lack of support
○ Wasn’t really compatible with HPC (no or old versions of Java, …)

● To re-use the physics components of the Kepler ETS
○ Moved from FC2K wrapped actors to iWrap wrapped actors

■ Some logic changes were necessary where non-IDSs had been used
● Two complementary approaches

○ Pure python (all logic in the python code, direct call of the wrapped
physics routines)

○ Persistent Actor Framework
■ Workflow consists of communicating programs

● Logic in the interconnections and some glue python actors

9

Goals of the Python developments

● Also a pure python approach is being pursued by Rui Coelho
○ Object oriented ETS workflow (ETSpy)

● ETS-PAF
○ Uses MUSCLE3 (https://muscle3.readthedocs.io/en/latest/,

https://github.com/multiscale/muscle3)
● Not a direct re-implementation of the Kepler workflow

○ Started by building physics-less workflows to test ideas and see what was
possible

○ Then built up more data centric workflows
■ To test timings
■ To test physics actors

○ Then added more physics

10

Development

https://muscle3.readthedocs.io/en/latest/
https://github.com/multiscale/muscle3

11

Running an AUG case: grab the data using UDA
costerd@sdcc-login02 uda-test]$ time idscp -s
'imas://uda.ipp.mpg.de:56565/uda?path=/root/public/imasdb/aug/3/32408/1&backend=hd
f5' -d "imas:hdf5?user=costerd;pulse=32408;run=1;database=aug;version=3" -a
ERROR:root:b'al_begin_dataentry_action: [ALBackendException = HDF5 master file not
found: /home/ITER/costerd/public/imasdb/aug/3/32408/1/master.h5]'
ERROR:root:b'al_begin_dataentry_action: [ALBackendException = HDF5 master file not
found: /home/ITER/costerd/public/imasdb/aug/3/32408/1/master.h5]'
[11/18/24 15:39:35] WARNING Destination pulse does not exist. Creating.
idscp:99
WARNING:module:Destination pulse does not exist. Creating.
Copying core_profiles
Copying dataset_description
Copying ec_launchers
Copying ece
Copying equilibrium
Copying ic_antennas
Copying nbi
Copying pulse_schedule
Copying summary
Copying tf
Copying wall
5.390u 6.406s 9:56.97 1.9% 0+0k 0+0io 0pf+0w

Using rsync to copy the HDF5 files
(18 MB) from ITER to Garching took

5.54 seconds!

12

Running an AUG case
● Grab the data using UDA (similar to previous slide except that we will use a previously copied case

for AUG 17151 – I did not save the timing information)
● Run muscle

○ muscle_manager --start-all

■ workflows/transport_subworkflow_encapsulated.ymmsl

■ workflows/sources_subworkflow_encapsulated.ymmsl

■ workflows/ets_main_encapsulated_with_ets_init.ymmsl

■ implementations/transport_anomalous_tcibgb.ymmsl

■ settings/aug_BGB.ymmsl

13

Running an AUG case

First attempt at starting from UDA (AUG/17151)

● idscp -s 'imas://uda.ipp.mpg.de:56565/uda?path=/root/public/imasdb/aug/3/17151/1&backend=hdf5' -d
'imas:hdf5?path=db.tmp/aug/3/17151/1' -a

● rsync -avP db.tmp/aug/3/17151 ~/public/imasdb/aug/3/
● muscle_manager --start-all workflows/transport_subworkflow_encapsulated.ymmsl

workflows/sources_subworkflow_encapsulated.ymmsl
workflows/ets_main_encapsulated_with_ets_init.ymmsl
implementations/transport_anomalous_tcibgb.ymmsl settings/aug_BGB.ymmsl

● HDF5_BACKEND/aug_ets_paf/17151/1
run_ETS_MAIN_ENCAPSULATED_WITH_ETS_INIT_20240912_165718

● ErrTol=0.001 amix_transport=
● 3.000001 3.33467 5.0 1e-06 0.0294118 0.1
● ResourceUsage = 32.692 3.605 415.695 581652
● 135 iterations
● 68 time-steps

Status of 2024-09-12

First attempt at starting from UDA (AUG/17151)

● Used dummy sources rather than the real ones
○ Gaussian

■ Particles: 1.000000e+21 / second
■ Electron energy: 3.000000e+06 W
■ Ions energy: 3.000000e+06 W

Some other parts of ETS-PAF

● Source available at https://gitlab.eufus.psnc.pl/ets/ets_paf
● Documentation generated by pipeline on a push

○ https://ets.pages.eufus.psnc.pl/ets_paf/
● A single (currently) non-regression test is also run on a push

○ Comparing Data Entries... ━━ 100%
0:00:00

○ Comparisen between
○ imas:hdf5?path=test_data/ets.ymmsl
○ imas:hdf5?path=run_ETS_20241205_171527/instances/finish/workdir
○ ┏━━━━━━━━━━━━━━━━┳━━━━━━━━━┓

○ ┃ ids field name ┃ Comment ┃
○ ┡━━━━━━━━━━━━━━━━╇━━━━━━━━━┩

○ └────────────────┴─────────┘

○ [12/05/24 17:16:51] INFO Writing to html file idsdiff:52
○ :idsdiff_reports/20241205_171651_compare
○ _report.html
○ Segmentation fault (core dumped)
○ The test tests/01_ets passed

● Have also run cases with
○ W (all charge states)
○ Stiff transport models (mixing of transport coefficients)

Status of 2024-09-12

https://gitlab.eufus.psnc.pl/ets/ets_paf
https://ets.pages.eufus.psnc.pl/ets_paf/

● MUSCLE3 provides a very convenient framework for developing workflows
○ Separate stdout/stderr in files for each component
○ Easy to set up test workflows before adding to the main workflow

■ Important to do this
○ Pretty clean way of building up the workflow on the command line

■ muscle_manager --start-all workflows/transport_subworkflow_encapsulated.ymmsl
workflows/sources_subworkflow_encapsulated.ymmsl
workflows/ets_main_encapsulated.ymmsl
implementations/transport_anomalous_tcibgb.ymmsl settings/jet.ymmsl

○ There is a tool still in development for visualizing workflows
■ I’m not sure how helpful a GUI would be to develop workflows

● What would be nice to have
○ A better model for encapsulation

■ The so far implemented “encapsulation” is ad hoc and implemented by the workflow
designer

■ Will need something better when we incorporate the ETS workflow into an UQ
workflow

17

Experience gained during this effort

● Continue development of the two versions
○ Benchmark them against ETS-6 and other transport codes using IDSes

■ ETS-6 has a non-regression set of test of increasing complexity
○ Add more physics

■ HCD
○ Look to setting up desired cases using the autoGUI or its successor
○ Build the user-base
○ Look at making doing UQ easier

● Look to choose (at some point) whether we want to maintain both of the new
ETSes

● ETS-PAF might morph into ??? at ITER

18

Plans

● Thanks to the ETS working group
○ Pär Strand, Rui Coelho, Dimitry Yadikin, Thomas Jonsson, Francesca Poli

■ Some funded as part of an ACH activity
○ A very big thank you to Chalmers University who have paid for face-to-face working

sessions

19

Acknowledgements

20

Backup slides

Timing tests (serialization and deserialization)

● PAF relies on serialization / deserialization to transfer IDSes
● Implementation of a new serializer resulted in a substantial speed-up for larger IDSes and a

smaller but still significant speed-up for smaller IDSes

21

ASCII_SERIALIZER_PROTOCOL FLEXBUFFERS_SERIALIZER_PROTOCOL

run_TIMER_SERIALIZATION_20240828_104208 run_TIMER_SERIALIZATION_20240828_105408
IDS Serialization / Deserialization time (s) Ratio Serialization / Deserialization time (s)

average stddev FLEXBUFFERS / ASCII average stddev
equilibrium 0.988 0.014 2.1% 0.020 0.001
core_profiles 0.022 0.001 34.8% 0.008 0.000
core_transport 0.051 0.001 39.6% 0.020 0.001
core_sources 0.025 0.001 39.9% 0.010 0.000
transport_solver_numerics 0.028 0.002 33.7% 0.010 0.000

Stress testing MUSCLE3: running ETS-PAF on a few cores

Number of cases

Runs required cores=1 cores=2 cores=3 cores=4

1 247 558 891 1296

2 340 357 176

3 179 137 87

4 133 109 110

5 110 75 32

6 108 55

7 105 5

8 41

9 33

Total required 4554 2859 2104 1296

Ratio required 3.51 2.21 1.62 1.00

This was done with MUSCLE3 0.7.1
PCE order 5

TCI TGLF vs QLK scaling

Status of 2023-09-13

The scaling for TGLF
seems to be much
better for TGLF than for
QLK
● For 32 cores

○ TGLF : 87%
○ QLK : 45%

● Different strategy?

● Learning experience: running TGLF with internal boundary condition at rho_tor_norm=0.95
○ Have not yet found a way of stabilizing the process

■ Using stride=4
■ Limitation on the (relative) amount a profile can change on a time-step

● Applying the IBC at 0.75 was much more stable

24

More physics, or fighting TGLF …

Main panel of ETS6 (Kepler)

25

Zoom into the convergence loop

26

Started by implementing the logical pieces that would be needed

Started small:

● Implemented a prototype version of the ETS using
MUSCLE3 (workflows/ets.ymmsl)

● Send a small equilibrium IDS around the workflow

Have a

● “timeloop” actor which advances time from 0 to
1 seconds

● “convergenceloop” actor which performs 10
iterations

● “work” actor representing the main physics
loop of the ETS

Then extended the prototype to have 5 work actors in
parallel and a combiner (workflows/ets_parallel.ymmsl)

27

Test of physics actor trigger: trigger_equilibrium

<g2dpc@s53 ~/GIT/ets_paf>grep 'eqchease_out(i)'
run_ETS_TEST_TRIGGER_EQUILIBRIUM_20230530_131004/instances/equilibrium/stdout.txt
 eqchease_out(i)%time= 0.100000000000000
 eqchease_out(i)%time= 0.100000000000000
 eqchease_out(i)%time= 0.200000000000000
 eqchease_out(i)%time= 0.200000000000000
 eqchease_out(i)%time= 0.300000000000000
 eqchease_out(i)%time= 0.300000000000000
 eqchease_out(i)%time= 0.400000000000000
 eqchease_out(i)%time= 0.400000000000000
 eqchease_out(i)%time= 0.500000000000000
 eqchease_out(i)%time= 0.500000000000000
 eqchease_out(i)%time= 0.600000000000000
 eqchease_out(i)%time= 0.600000000000000
 eqchease_out(i)%time= 0.700000000000000
 eqchease_out(i)%time= 0.700000000000000
 eqchease_out(i)%time= 0.800000000000000
 eqchease_out(i)%time= 0.800000000000000
 eqchease_out(i)%time= 0.900000000000000
 eqchease_out(i)%time= 0.900000000000000
 eqchease_out(i)%time= 1.00000000000000
 eqchease_out(i)%time= 1.00000000000000
<g2dpc@s53 ~/GIT/ets_paf>

<<g2dpc@s53 ~/GIT/ets_paf>grep 'eqchease_out(i)'
run_ETS_TEST_TRIGGER_EQUILIBRIUM_20230530_131507/instances/equilibrium/stdout.txt
 eqchease_out(i)%time= 0.100000000000000
 eqchease_out(i)%time= 0.200000000000000
 eqchease_out(i)%time= 0.300000000000000
 eqchease_out(i)%time= 0.400000000000000
 eqchease_out(i)%time= 0.500000000000000
 eqchease_out(i)%time= 0.600000000000000
 eqchease_out(i)%time= 0.700000000000000
 eqchease_out(i)%time= 0.800000000000000
 eqchease_out(i)%time= 0.900000000000000
 eqchease_out(i)%time= 1.00000000000000
<g2dpc@s53 ~/GIT/ets_paf>grep 'eqchease_out(i)'
run_ETS_TEST_TRIGGER_EQUILIBRIUM_20230530_132253/instances/equilibrium/stdout.txt
 eqchease_out(i)%time= 0.100000000000000
 eqchease_out(i)%time= 0.400000000000000
 eqchease_out(i)%time= 0.700000000000000
 eqchease_out(i)%time= 1.00000000000000
<g2dpc@s53 ~/GIT/ets_paf>

iterations: 2
EquilibriumFrequency: 0: every_iteration; 1: every_time_step; 2: with_fixed_time_intervals
EquilibriumTimeIntervals: 0.25

28

Timing tests (send and receive / receive and send)

Workflow implemented to time ping-pong flows of IDSes between a sender and receiver

29

Timing tests (send and receive / receive and send)

Timing results:

● Less than 0.1 seconds on
average to send and
receive back again the
biggest IDS (24.75 MB)

Elapsed time (seconds)

Cycles IDS Size sender receiver

average stddev average stddev

10

equilibrium 25952797 0.1035 0.0244 0.0290 0.0052

core_profiles 289325 0.0270 0.0652 0.0011 0.0004

core_transport 766757 0.0203 0.0399 0.0016 0.0006

core_sources 350596 0.0162 0.0317 0.0012 0.0003

transport_solver_numerics 420188 0.0064 0.0027 0.0013 0.0007

100

equilibrium 25952797 0.0890 0.0102 0.0268 0.0019

core_profiles 289325 0.0068 0.0023 0.0012 0.0004

core_transport 766757 0.0082 0.0014 0.0016 0.0003

core_sources 350596 0.0076 0.0014 0.0013 0.0004

transport_solver_numerics 420188 0.0072 0.0023 0.0013 0.0005

30

31

Have options to run “expensive” models every iteration, every time-step or every X seconds

Models for equilibrium update, sources (analytical expressions), transport (Spitzer and analytical
expressions), appenders and combiners (fully for transport, in progress for sources)

Can solve current, density and temperature equations

Incorporated the pieces into a prototype ETS workflow

32

Then developed the ETS workflow with all of the key pieces

Number of components: 52

Number of connections: 133

Number of settings: 40

Decided to implement subworkflows

Equilibrium

Transport

Sources

Edge

33

ets_main_encapsulated

34

transport_subworkflow_encapsulated: redrawn

35

sources_subworkflow_encapsulated: redrawn

36

Memory and time usage of ETS_PAF

● Biggest user of memory is trigger_equilibrium
● Biggest users of time

○ convergenceloop [multiple serialize/deserialize operations]
○ equilibrium (chease)
○ ets [multiple serialize/deserialize operations, including two equilibrium IDSes]
○ eqinput [multiple serialize/deserialize operations, particularly of the equilibrium IDS]

37

Digging deeper into two python routines

● convergenceloop

○ 992.49 elapsed serialization
time

○ 857.03 elapsed deserialization
time

○ 97% of user+system time

● timeloop

○ 258.24 elapsed serialization
time

○ 226.39 elapsed deserialization
time

○ 88% of user+system time

● Speed-up 12%

● Efficiency 6%

38

Timeline for a JET simulation (50 timesteps)

Unexpected pattern

Unexpected pattern

MPI code on 32 cores

MPI code on 32 cores

39

● Have a workflow running with all (?) of the key pieces
○ Time loop
○ Convergence loop

■ Equilibrium / update core_profiles
■ Transport codes

● With appender and combiner
● Pretty complete

○ TCI based codes + analytical background
■ Sources

● Not yet complete, but have
○ Analytical models
○ Thermonuclear fusion (simplified)
○ Impurities

■ Core-edge prototype
■ European Transport Solver (transport solver)

40

Status

● Much of the logic of the workflow is implemented in one or more YAML files that
provide
○ The names of the actors
○ The connections between the actors
○ The resources needed by the actors
○ The actual implementation for each actor
○ The settings needed by the actors

● Then have a collection of python actors that implement I/O, logic (data readers and
writers, time loop, convergence loop, triggers, …)

● Multiple sources of the iWrap’ped actors
○ Waiting for the implementation of the Actor Release Procedure

41

Status, II

Example: JET D+Be simulation, BGB + analytic sources

42

UQ: Two options for doing Uncertainty Quantification

1. Run EasyVVUQ* in the usual fashion, launching many copies of the MUSCLE workflow
using one of the supported technologies (QCG-PJ, SLURM, DASK, etc.)

 EASYVVUQ(MUSCLE3)

2. Embed EasyVVUQ as a component within a MUSCLE3 workflow

 MUSCLE3(EASYVVUQ)

* https://easyvvuq.readthedocs.io/en/dev/ “EasyVVUQ: Uncertainty intervals for everyone!”

43

https://easyvvuq.readthedocs.io/en/dev/

UQ inside MUSCLE3 [MUSCLE3(EASYVVUQ)]

Have an

● easyvvuq actor that creates an UQ
“campaign”

○ PCE order 5

○ 5 varying parameters
● Passes settings to the load_balancer
● Which runs multiple copies (10 in this

case) of the fusion_muscle3 code,
each with different settings

● Use the fusion proxy app instead of
the full workflow at this stage

○ Intend to use the full workflow in
the future

44

UQ inside MUSCLE3

UQ workflow using EasyVVUQ with
muscle3 on the simple fusion transport
solver from the EasyVVUQ tutorials

● PCE order 5

● 5 varying parameters

● 10 copies of the fusion code

Hope to implement this functionality
with the ETS-PAF

45

UQ applied to ETS-PAF [EASYVVUQ(MUSCLE3)]

● 5 s JET BGB
● 4 varying parameters
● Electron temperature (Te) profiles after 5 seconds of simulation
● Sobol’ first for Te

UQ applied to ETS-PAF

● Electron density (ne) profiles after 5 seconds of simulation

● Sobol’ first for ne

UQ applied to ETS-PAF

● Zeff profiles after 5 seconds of simulation

● Sobol’ first for Zeff

Have extended the UQ to all time-slices

● This involved extracting all time slices from each run and storing the data in results.csv
● Modifying the processing the data to convert the 1d data back to profiles as a function of time and space
● Modifying the plotting to deal with this, allowing the user to choose cuts

○ [-1,:] : over rho_tor_norm at the last time point
○ [:,0] : over time for the centre of the plasma

● Plots based on PCE order = 3

