Preliminary analysis of JET 99896/5

V.-A. Popa, Ph. Lauber, Th. Hayward-Schneider JET IMAS data prepared by Jorge Ferreira

TSVV#10 meeting

22.1.2025

Overview

- Objectives:
 - perform time-dependent analysis on experimental DT data using IMAS-integrated EP-Stability-WF
 - validation of model hierarchy
 - get valuable insights into the dataset given by transport code; identify potential problems
 - identify with certainty effects that need to be studied (linear vs non-linear)
- Known problems:
 - No NBI distributions are present in the IDS (using Maxwellian equivalent)
 - treatment fast pressure perpendicular component (H) (19.02.2024 report JET data)

EP-Stability WF - Interface

		EP WOR	RKFLOW		×		LIGKA PARAMETERS	s ×
WORKFLOW PARAMETERS			ACTOR SELECTION			LIGKA PARAMETERS		
user		public	Equilibrium_code_chease	0	•	modus	5	
machine		ITER	Equilibrium_code	Helena	•	min n tor	1	
shot nr		130012	Distributions_1	0	•	max n to	r 10	_
run in		2	Distributions_2	0	•	min m	1	-
machine out		test DB	Orbit_Finder	0	•	max m	2	- 1
run out		10	Stability_code	Ligka_m5	•	sidebands	5	-
itime		15-17,19	CHEASE Parameters			sidebands	_asy 2	
	FURTHE	R SETTINGS	HELENA Parameters			mode_typ	e 1	
ligka_541			LIGKA Parameters			cocp	1	-
ligka_5412						zof	0	-
pulse_list			HAGIS 1 Parameters			start pos	1	-
fast_particles			HAGIS 2 Parameters			force m	false	-
hdf5						npsi out	256	-
mpi_processes	s	8	FINDER Parameters			kr read	0.0d0	-
Save Conf	figuration	Save and Run	Species Settings			q0	0.0d0	-
	5		species settings			rad start	0.0d0	_
Save Config	guration as	Load Configuration	SCENARIO Parameters			rad_end	1.0d0	
Restore	Default		IDS Merge			offset_d	0.0d0	V
		Scenario Summary Choice					Save LIGKA Configuration	
Exit							SPECIES SET	TINGS
	HELENA	PARAMETERS	× SCENA	RIO PARAMETERS		×	Electrons	
		TEDC			- 1	e		
HELEN		TERS	SCENARIO PARAI	METERS (multiplier	S)		Bulk Ions	
nr	101		n_e 1			н	0.02	
np	129		1 n_H				0.02	
nrmap	128		n_D 1			Т	0.02	
npmap	129						0.02	
nchi	128		n_Be 1				Impurities	
shot_number	101006		n_C [1			Be	0.02	
run	60		n_Ne 1			Ne	0.02	
user	public		n_He4_ash 1			He	4 0.02	
machine	ITER		n_He4_EP 1			с	0.02	
itime_s	1		1 T_e 1			Tu	0.02	
itime_e	1					Ar	0.02	
ids_time_s	164						Fastland	
ids_time_e	164						Fascions	
run_out	60		I_Be 1			н	0.001	
user_out	lauberp					D	0.001	
machine_out	helena_test		T_Ne 1			Т	0.001	
write_out	0		T_He4_ash 1			He	4 0.001	
			T_He4_EP 1				Save Species Confi	guration
			DT					
	Save HELEN	IA Configuration	Save SCE	ENARIO Configuration				

- The aim of the WF is to perform an automated linear stability analysis on different time slices of a projected scenario or reconstructed experimental equilibrium.
- First time-dependent workflow which makes use of the IMAS infrastructure and various codes.

• Scope:

- Connect the numerical tools with the data infrastructure (IMAS).
- Facilitates retrieving/saving data from the DB through XML files.
- Fast configuration of numerical tools.

Preparation for JET experiment analysis:

- generalisation to up to 5 EP species
- Fast Ion/Thermal/Total density checks
- extend LIGKA interface to more than 2 EP species
- various checks and tests introduced

1AS). . files.

IMAS_DB (public)

https://indico.euro-fusion.org/event/2729/

EP-WF - Actor level

Added in preparation for JET experiment analysis:

- LIGKA extensive modification and testing regarding multiple species of fast/thermal ions.
- Given the high pressure from fast ions, some solvers (kinetic continuum, global solver) had to be tuned (e.g. numerical settings; complex plane integration domains,...)
- Preparing ATEP for JET data

• Maintenance cycle of actors + WF:

- Actors are self contained codes that can act independently or as part of a workflow.
- They are continuously tested and maintained via versions (different modules in sdcc/gw)
- On top of that we have the EP-Stability-WF integrated testing.
- When testing the wf, we also test the integration of LIGKA + HELENA/CHEASE inside the WF (2x testing for actors)
- Testing happens automatically at every push of every piece of code (via automated bamboo tests)

LIGKA - summary

LIGKA: solves linearized gyrokinetic equations to obtain eigenvalues and eigenfunctions.

- Model 5 (analytical): local analytical estimates of various AEs properties
- Model 4 (local): local analytical dispersion relation for one AE (n,m-pair), giving a good estimate for ion LD (Landau Damping) and local electron LD.
- Model 1 (global): find linear properties of AEs, i.e. the location of the global AE in the gap.
- Model 2 (global, refined): find the phase jump during the frequency scan, more accurate growth/damping rate.
- Model 6/3: reduced MHD/kinetic spectrum.

JET - DT - 99896/5

- q-profile is decreasing during the discharge
- slightly reversed q-profile
- no sawtooth dynamics included
- we cannot expect direct correspondence to the experiment: q=1 constrained equilibria are needed

- 200

- n,m = 4,4 and 5,5 exist across the discharge
- (4,3) and in general (n, n-1) due to the q lacksquareprofile will not exist everywhere

 \bullet

local analytical model: TAE frequency

- n = 1...30 \bullet
- m = n 1 ... n + 3 \bullet
- number of modes = 32k (45 min runtime (including equilibrium calculations)
- frequencies roughly constant; after 11s Alfven frequency decreases, so the mode frequency increases
- $q_{TAE} = (m+1/2)/n$

n=4, m=4 n=4, m=3 n=5, m=5 n=5, m=4

radial location of the n/m=4/4 and 5/5 modes (light blue lines) - and all other TAEs move radially outwards, away from steep EP gradient region: contradiction to stronger mode activity in second phase of discharge

local analytical model: TAE radial location

- The analytical model determines the middle of the continuum TAE gap
- The q=1 surface shifts during the discharge, and it can be seen going away from the core and towards the middle of the plasma.
- Different branches of the same modes are visible near the core, where q profile is non-monotonic.

n=4, m=3 n=4, m=4 n=5, m=4 n=5, m=5

- Shifting of the gap (modes) away from the core is visible.
- Modes of the kind (n,m) = (n,n) like (5,5) even and odd exist during the whole discharge in the highest EP gradient region
- Closing of the (n, n-1) gap is evident once kinetic continuum calculation (model 3) is run with fast ions. lacksquare

- The same behavior is observed for n=4
- \bullet
- \bullet

The difference between n=4 and n=5 is approximately 5 kHz (different radial location and thus different Alfven velocity, q) The difference between the location of the modes inside is shrinking (shear is increasing: closer distance of TAE locations)

TAE frequency and damping w/o EPs

- even TAE frequency as calculated with different LIGKA models:
 - blue: analytical middle of the TAE gap
 - orange: local kinetic model: top of kinetic continuum
 - red/green: global kinetic solution; as expected between the top pf the continuum and the middle of the TAE gap
- the local model (M4) cannot capture all the \bullet damping mechanisms: Landau and radiative are captured with analytical model; however not accurate in this case
 - From this point forward, both runs with EPs and one without EPs will display the refined global solver (M2) results.

TAE frequency and growth-rate (H)

W/o H - blue

With H - orange

TAE frequency and growth-rate (T)

W/o T - blue

With T - orange

TAE frequency and growth-rate (all EPs)

- With H, D, T, and alphas turned on, we see a strong drive of the (n,m) = (5,5) even mode.
- The first 9s, Deuterium (NBI + ICRF) and Hydrogen (ICRF), were the main contributors to the drive.
- Once the D beam is switched off, the drive mainly comes from H.
- alphas and T do not contribute significantly to the drive
- For odd modes, we also notice drive but of lower magnitudes (~2.3%).

W/o EPs - blue

With EPs - orange

→ n=5 even → n=5 even EPs

🗕 n=5 even

n=5 even EPs

- typically that is a good approximation for background particles and beam drive (passing particles, see AUG, ITER cases)
- here: check sensitivity of FOW effects by scaling $k_{\perp} \rho_{EP}$ in FOW terms

- result: high sensitivity to FOW effects; trapped H ions will have strong influence on all linear mode properties
- note: real frequency behaviour similar to ITPA FOW scan (first down, then up, as expected from theory)

explanation of mismatch: scaling of frequency, drive and mode structure with FOW effects

• fast WF version of LIGKA: use passing particles approximation for calculating kinetic response, also for FOW (finite orbit width) effects

• for JET DT case, drive comes mainly from trapped H ions - differences are expected to be considerable: need for accurate distribution function

• in addition: as shown in [Lauber, AAPPS-DPP 2021], trapped electrons in flat shear region damps KAW (not included fast WF version)

- n=5 even
- Position (r): 0.447
- Harmonics (m): [2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
- Frequency: 140.472 kHz
- Growth rate: -1.177%

- n=5 even EPs
- Position (r): 0.447
- Harmonics (m): [2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
- Frequency: 139.834 kHz
- Growth rate: 2.473%.

 (m=2.0)
 (m=3.0)
 (m=4.0)
 (m=5.0)
 (m=6.0)
 (m=7.0)
 (m=8.0)
 (m=9.0)
 (m=10.0)
 (m=11.0)
 (m=12.0)

1.0

• n=5 odd

- Position (r): 0.399
- Harmonics (m): [2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
- Frequency: 196.337 kHz
- Growth rate: -1.373%

t = 8.508s

- n=5 odd EPs
- Position (r): 0.399
- Harmonics (m): [2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]
- Frequency: 203.072 kHz
- Growth rate: 2.360%.

- With a rotation of 2 kHz, which means for n=5, adding 10 kHz to the frequency.
- While the trend is being followed, as expected, the frequency of both even and odd nodes no not reproduce the experiment
- Looking at the magnetic data and the difference between n=4 and n=5, a rotation of 5 kHz was assumed.
- Applying the rotation to both odd and even (5,5) modes, similar frequencies are found

dPz/dt for barely trapped hydrogen ions, A≈I fixed mode amplitude: dB/B= 10⁻³

dPz (Pz,Lambda), Lamda=956 [mu B0/E/1000]

EP transport: calculate EP fluxes for n=4+5 modes: H ions (ATEP)

t = 8.508s

dPz/dt for 660 keV H ions

dPz (Pz,Lambda), energy=661000

 $F_{EP}(Pz, E, \Lambda)$ needed to calculate EP relaxation

200 150 100 50 0 -50 -100 -150 -200

dPz/dt for deeply passing ions, A≈0.2 fixed mode amplitude: dB/B= 10⁻³

dPz (Pz,Lambda), Lamda=223 [mu B0/E/1000]

EP transport: calculate EP fluxes for n=4+5 modes: D ions (ATEP)

dPz/dt for 80keV beam D ions

dPz (Pz,Lambda), energy=80000

 $F_{EP}(Pz, E, \Lambda)$ needed to calculate EP relaxation 23

dPz/dt for deeply passing alphas , Λ≈0.2 fixed mode amplitude: dB/B= 10⁻³

dPz (Pz,Lambda), Lamda=209 [mu B0/E/1000]

EP transport: calculate EP fluxes for n=4+5 modes: alpha particles (ATEP)

dPz/dt for 2MeV alphas

dPz (Pz,Lambda), energy=2011000

Overview - Outlook

- Objectives:
 - Stability-WF
 - in ,time' done: further reduction of runtime can be easily obtained)
 - get valuable insights into the results but also the potential problems
 - identify with certainty effects that need to be studied (linear vs non-linear) not yet
- improvements needed for more accurate modelling:
 - No NBI distributions are present in the IDS (using Maxwellian)
 - q=1 surface not properly captured during Sawtooth cycles
 - fast pressure perpendicular component (H)
 - missing rotation profile
 - experimental estimates of saturated amplitudes (at least relative estimates)
- Outlook:
 - Repeat when distributions become available differences due to FOW effects expected
 - Run ATEP for EP transport and profile relaxation

perform time-dependent linear analysis on experimental DT data using IMAS-integrated EP-

• tune fast models to give accurate results (1-week runtime for everything/ so far no parallelisation

25