W7-X Physics Meeting 20 January 2025

Intro to ICRH at W7-X and consequences for operations

Jef Ongena¹, Kristel Crombé^{1,2}, Dirk Hartmann³, Christoph Slaby³, Yevgen Kazakov¹, Maja Verstraeten¹

David Castano-Bardawill¹, Pierre Dumortier¹, Peter Kallmeyer³, Alexander Knieps⁴, Andreas Krämer-Flecken⁴, Daniel Lopez¹, Guruparan Satheeswaran⁴, Bernd Schweer¹, Ivan Stepanov¹, Michel Vervier¹, Mathias Stern³, TEC-team, W7X-team

¹Laboratory for Plasma Physics, ERM-KMS, Brussels, Belgium (TEC team)
 ²Department of Applied Physics, Ghent University, Gent, Belgium
 ³Max Planck Institut für Plasmaphysik, Greifswald, Germany
 ⁴IFN-1/Plasmaphysik and ZEA-1, Forschungszentrum Jülich, Germany (TEC team)

Ion Cyclotron frequency f

$$\omega = 2\pi f = \frac{q_e B}{m_p} \frac{Z}{A}$$
 (15.25 MHz per Tesla for H)

Resonance location for given frequency (for tokamak R dependence of B-field)

$$\left. R
ight|_{\omega = N \omega_{ci}} pprox R_0 imes N imes (Z/A)_{ ext{i}} imes rac{15.25 B_0(ext{T})}{f(ext{MHz})}
ight.$$

Frequency of launched waves by ICRH antenna
For fixed antenna frequency and B field, resonance location determined by Z/A of the respective ion.

ICRH Is a flexible method:

- heat ions with given Z/A as $\omega \sim (Z/A)$
- heat ions at specific location as $\omega \sim (B_0/R)$

Phasing of antenna straps and k_{\parallel} value

Strap current phasing determines dominant k_{//} and wave directivity

Coupling depends on edge density profile and k_{II} value

ICRH system in W7-X

- A two-strap antenna without Faraday Screen
 - → 3-D shaped (aligned with the LCMS for the standard configuration)
 - → flexible RF current phasing between the straps $(k_{\parallel}$ -spectrum and coupling)
- Frequency range *f* = 25-38 MHz
- Pulsed mode operation: up to 10s (every 3 minutes)
- Main Aim: fundamental test of the confinement of fast particles in view of a future Helias fusion reactor

J.Ongena et al., Phys. Plasmas 21, 061514 (2014) B.Schweer et al., Fus. Eng. Design 123, Pages 303-308 (2017) D.A. Castaño Bardawil et al., Fus. Eng. Design. 166 112205 (2021)

Page 5

Phasing	Dominant k _∥ (m⁻¹)
0 0	3.6**
	18
0 ±π/2	6.2*
	14
0 π	10

** coaxial modes strongly excited* coaxial modes somewhat excited

Specific properties of the ICRH antenna for Wendelstein 7-X

To improve coupling to all magnetic configurations in W7-X → Radial displacement of the antenna

Improving the coupling for all magnetic configurations → local gas puffing at the antenna

Maximal flux: 6mb liter/sec ~ 5 10²⁰ particles/sec (for sum of all holes on one side)

Profile measurements in front of antenna with reflectometry

Use of X-Mode-Polarisation in the E- and W-Band at 2,5 T To measure the density profile in front of the antenna

Electron density profile recorded for 2.5ms (50µs one profile) for a time interval of 100ms

Example density profiles before antenna measured during ICRH

The reflectometer is also available outside ICRH operations Page 11

Details of matching system

Flexible system for 1 or 2 generators with elimination of cross-coupling Cross-coupling between straps ~ Sin($\Delta \Phi$)

Demonstration of technical capabilities in OP2.2

400 kW, ~1 s : plasma startup realized

Page 14

400 kW, ~1s : plasma startup realized !

450 kW ICRH power for 6s, without breakdowns at antenna

Page 16

500kW ICRH power modulation during 9s

Fast particles generated with ICRH in W7-X

Page 18

IPP colleagues involved in FILD project

But heating (albeit small) seen in ICRH experiments before (Feb/Mar '23)

With single strap (~monopole phasing) antenna

XP_20230330.35 | Physics parameters | UTC: 11:07:04 | T0: 1680174424234000000

Heating and fast particle generation with ICRH in toroidal systems

E₊ and E₋ components of RF electric field

- $E_{+} \rightarrow$ ion rotation direction
- E_{-} → electron rotation direction

Correct polarization determines wave absorption

 $egin{aligned} &\omega = oldsymbol{N} \omega_{ci}: & P_{ ext{abs,i}} \propto ig| oldsymbol{E}_+ J_{oldsymbol{N}-1}(k_\perp
ho_{ ext{L}}) + oldsymbol{E}_- J_{oldsymbol{N}+1}(k_\perp
ho_{ ext{L}}) ig|^2 \ & ext{cold plasma, N=1:} & k_\perp
ho_{ ext{L}} \ll 1: & J_0 pprox 1, \ J_N \propto (k_\perp
ho_L)^N \ll 1 & imes P_{abs,i} \propto ig| oldsymbol{E}_+ ig|^2 \end{aligned}$

From Maxwell equations: Electric field polarization at resonance position

depends on plasma composition

- 1. Single ion plasma i heating does not work at $\omega = \omega_{ci}$
- 2. Need two ions in plasma e.g. minority heating (H)-D; minority at a few %: $\omega = \omega_{cH}$
- 3. Harmonic heating $\omega = N \omega_{ci}$ (e.g. second harmonic heating)

$$\left|\frac{E_{+}}{E_{-}}\right| = \left|\frac{\omega - \omega_{ci}}{\omega + \omega_{ci}}\right|$$

$$\left|\frac{E_{+}}{E_{-}}\right| \simeq \left|\frac{\omega_{ci} - \omega_{ci}}{\omega_{ci} + \omega_{ci}}\right| \simeq 0$$

$$\omega = \text{frequency} \text{ applied at the antenna}$$

$$\left|rac{E_+}{E_-}
ight|\simeq \left|rac{\omega_{cH}-\omega_{cD}}{\omega_{cH}+\omega_{cD}}
ight|= \left|rac{2\omega_{cD}-\omega_{cD}}{2\omega_{cD}+\omega_{cD}}
ight|=rac{1}{3}$$

$$\left|rac{E_+}{E_-}
ight|\simeq \left|rac{N\omega_{ci}-\omega_{ci}}{N\omega_{ci}+\omega_{ci}}
ight|=rac{N-1}{N+1}$$

J.Ongena et al., Plasma Phys. Control. Fusion 59 054002 (2017)

Fundamental heating of single-ion species plasmas does not work

Example :

 $E_+ \sim 0$, thus as $P_{abs,l} \sim |E_+|^2 \sim 0$, i.e. heating effects are possible !

Fundamental ICRF heating of single ion plasmas DOES NOT WORK

Physics of ICRF heating at the fundamental frequency of the minority in two ion plasmas

Importance of the ion-ion hybrid layer and its location in the plasma cross-section

Ye.O. Kazakov et al., Nucl. Fusion 55 032001 (2015)

Presence of "ion-ion hybrid layer" in two ion plasmas

"Ion-ion hybrid layer" or IIH: short for the combination of L-cutoff and associated evanescence zone

➤ Located in between the two resonance layers
 ➤ Polarisation of RF electric field is mostly E₊: ideal for heating ions

Heating scenario's in two ion plasmas

✓ N=1: Ion absorption due to E_+

 $P_{
m abs} \propto |E_+ J_0(k_\perp
ho_{
m L}) + E_- J_2(k_\perp
ho_{
m L})|^2 pprox |E_+|^2$

✓ Ion-ion hybrid layer, with large E_+ : in between $R_{ic,2}$ and $R_{ic,1}$

Importance of presence of IIH: RF electric field circularly polarized in rotation direction of ions → ideal for ion heating

Minority heating in two ion plasmas

- ✓ N=1: lon absorption due to *E*₊ $P_{\rm abs} \propto |E_+J_0(k_\perp\rho_{\rm L}) + E_-J_2(k_\perp\rho_{\rm L})|^2 \approx |E_+|^2$
- ✓ Ion-ion hybrid layer, with large *E*₊:
 in between *R*_{ic,2} and *R*_{ic,1}
- At higher minority concentration: ion-ion hybrid layer moves away from minority resonance

3-ion heating in W7-X

The beautiful physics of 3-ion heating

Use a suitable ion that resonates at the ion-ion hybrid layer

Location of the IIH layer determined by plasma composition

Estimated shift between IIH layer and minority resonance

H-(³He) scenario at 25MHz : ~ 3.3cm for every % of ³He

⁴He-(H) scenario at 37.5MHz : ~ 1.5 cm for every % of H

Illustration for the ⁴He-(H) scenario with a 2D cold plasma model (C.Slaby)

3% H

B (T)

4% H

5% H

7% H

⁴He-(H) 10% H

B (T)

⁴He-(H) 15% H

Illustration for the H-(³He) scenario

H-(³He)

1% ³He

H-(³He) 2% ³He

H-(³He)

4% ³He

H-(³He)

6% ³He

What does this mean in practice for W7-X?

Estimated on the basis of the width of the resonance layer:

H minority in ⁴He for up to ~ 5-6 % H in ⁴He ³He minority in H for ~ 2-3% ³He in H

Optimal ICRH power deposition at ³**He concentration of ~ 2%**

M.Mayoral, Nucl. Fusion 46 (2006) S550-S563

ICRH Operations in OP2.3

Ion Cyclotron Wall Conditioning ⁴He-(H) heating experiments Plasma Startup ICRH + NBI H-(³He) heating experiments Given the reduced sensitivity on the minority concentration :

- ⁴He-(H) heating should be demonstrated first.

Need a machine with plasmas containing nearly pure ⁴He

- Wall loaded with ⁴He : ICWC should also be tested -> more homogeneous, more efficient ?
- Need precise and reliable H concentration measurements

For testing H-(³He) plasmas :

Need precise measurement of ³He concentration in a ⁴He plasma:
 Chris Klepper and colleagues, ORNL, together with IPP colleagues

Ideal sequence of operations

1st set of experiments (1 session?) : ICWC

2nd set of experiments (2 sessions?) : ⁴He-(H) at the end of a 4He week (or weeks)

- First wall should be free of H
- Using a well calibrated gas inlet (at antenna ?) and precise concentration measurement. Preceded by ICWC pulses.

3rd set of experiments (2 sessions ?) H-(³He)

- Only feasible if we have a precise ³He concentration diagnostic

4th set of experiments (1 session) ICRH startup followed by NBI takeover

3-ion heating experiments ⁴He-(³He)-H will need:

- Precise H and ³He/⁴He measurements

ICRH sessions should be under the exclusive control of the ICRH team

Interleaving with other experiments must be avoided to ensure that the plasma conditions remain stable and under control.