

PWIE annual meeting, March 24-27, 2025

Plans for the Work Package Tokamak Exploitation in 2025 and links with WP PWIE

E. Tsitrone for WP TE TFL

E. Tsitrone, N. Vianello, M. Baruzzo, A. Hakola, V. Igochine, D. Keeling, B. Labit With many thanks to RT06 RTC: Y. Corre, K. Krieger, A. Widdowson and RT06 team

- How does WP TE work?
- Recent selected highlights
- Plans for 2025
- Summary and prospects for 26-27

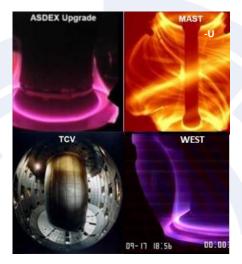
- How does WP TE work ?
- Recent selected highlights
- Plans for 2025
- Summary and prospects for 26-27

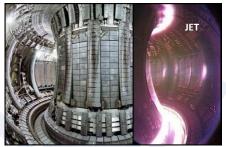
WP TE: coordinating the programme of EU tokamaks

Overarching goals of WP TE:

- Prepare ITER operation
- Provide physics basis for guiding DEMO design
 while building a pan European team for the scientific exploitation of fusion devices
 (cross-device program with > 600 participants from > 20 labs → EU contribution to JT-60SA, ITER)

WP TE addresses primarily the following missions of the EUROfusion roadmap:


- Mission 1 (Plasma Regimes of Operation)
- Mission 2 (Heat exhaust System)


WP TE coordinates the scientific programme of complementary EU tokamaks:

- Running the TE share of experimental time on AUG, MAST-U, TCV and WEST
- Analysing data from past JET campaigns
- Preparing the scientific exploitation of JT-60SA (since 2024)

WP TE also involved in:

- International collaboration (US: no ELM scenarios, KSTAR, EAST)
- Support to TE devices enhancements
- Al projects

WP TE is organized in 9 programmatic Research Topics

RT01: Core-Edge-SOL integrated H-mode

RT02: Alternative to type-I ELM regimes

Physics & Control integration

RT03: Disruption & RE mitigation strategies

RT04: Machine generic integrated control

RT05: Physics of divertor detachment

RT06: preparation of efficient PFC operation

RT07: Alternative divertor configuration

Of main interest for PWIE

RT08: Physics of high β long pulse scenario

RT09: Physics of energetic particles

JET RT:

RT10: JET data validation

RT11: experiments run before 2023

Mission 1

Mission 2

JT-60SA RT:

RT12 to RT18, reflecting the structure of the EU-JA Experimental Team (RT17 : Divertor, Scrape Off Layer and Plasma-Material Interaction)

WP TE is run by a collegium of Task Force Leaders ...

E. Tsitrone / CEA TFL

N. Vianello / ENEA TFL

M. Baruzzo/ ENEA DTFL

A. Hakola / VTT DTFL

V. Igochine / MPG DTFL

D. Keeling / CCFE DTFL

B. Labit / EPFL **DTFL**

J. Garcia / CEA DTFL - JT-60SA ETL

... and a large team of Research Topic coordinators

Research Topics	Research Topic Coordinators	Ref TFLs	
Research Topics	Research Topic Coordinators	KET IFLS	
RT-01: Core-Edge-SOL integrated H-mode scenario compatible with exhaust	Carine Giroud, Lorenzo Frassinetti,	Nicola Vianella Baneît Labit	
constraints in support of ITER	Sven Wiesen, Damian King	Nicola Vianello, Benoît Labit	
RT-02: Physics understanding of alternatives to Type-I ELM regime	Mike Dunne, Michael Faitsch, Olivier Sauter and Eleonora Viezzer	Benoît Labit, David Keeling	
RT-03: Strategies for disruption and run-away mitigation	Ondrej Ficker, Cedric Reux, Umar Sheikh	Valentin Igochine, Antti Hakola	
RT-04: Physics-based machine generic systems for an integrated control of plasma discharge	Adriano Mele, Lidia Piron, Charles Vincent	Matteo Baruzzo, Valentin Igochine	
RT-05: Physics of divertor detachment and its control for ITER, DEMO and HELIAS operation	Matthias Bernert, Holger Reimerdes, Nicolas Fedorczak, Stuart Henderson	Nicola Vianello, Emmanuelle Tstitrone	
TELIAS OPERATION	Nicolas Fedorczak, Stuart Hendelson	Istitione	
RT-06: Preparation of efficient Plasma Facing Components (PFC) operation for ITER, DEMO and HELIAS	Yann Corre, Karl Krieger, Anna Widdowson	Emmanuelle Tsitrone, Antti Hakola	
RT-07: Physics understanding of alternative divertor configurations as risk mitigation for DEMO	Dominik Brida, Christian Theiler, Kevin Verhaegh	Antti Hakola, Benoît Labit	
RT-08: Physics and operational basis for high beta long pulse scenarios	Fulvio Auriemma, Alexander Bock, Chiara Piron	Matteo Baruzzo, Valentin Igochine	
RT-09: Physics understanding of energetics particles confinement and their interplay with thermal plasma	Yevgen Kazakov, Joaquin Galdon, Anton Jansen van Vuuren, Roman Ochoukov	David Keeling, Matteo Baruzzo	
RT-11:Analysis and modelling of DTE2 related experiment on JET	David Keeling, Matteo Baruzzo		

RT06 RTC: Y. Corre, K. Krieger, A. Widdowson

Contact TFL for PWIE: E. Tsitrone, A. Hakola

For more information: check the WP TE wiki

https://wiki.euro-fusion.org/wiki/WPTE wikipages: Tokamak Exploitation Work Package

Building the WP TE programme: yearly cycle of calls

Call for experimental proposals for year n+1

Review meeting: mid year status of progress (RTC)

- Call for experimental proposals : early fall (TFL)
- General Planning Meeting: priority for proposals received and shot allocation within % of experimental time allocated to WP TE on each device as defined by EUROfusion GA (TFL)

Call for participation for year n+1

- Call for participation (TFL) : late fall
- Staffing selection before Xmas (TFL)

Year n+1

Year n

Experimental Campaign year n+1

 Strategy meeting : early year (RTC)

Strong links between WP TE and WP PWIE

Post mortem analysis of components exposed in tokamaks (SPA, SPB, SPC)

- Key for understanding material migration / fuel retention and recovery / PFC ageing in tokamaks ...
- WP TE (RT06): components exposure / dedicated experiments in tokamaks
- WP PWIE: pre/post exposure components analysis, in particular from metallic machines AUG, JET, WEST (SPB, SPE) + comparison with experiments in linear devices/HHF facilities (SPA)

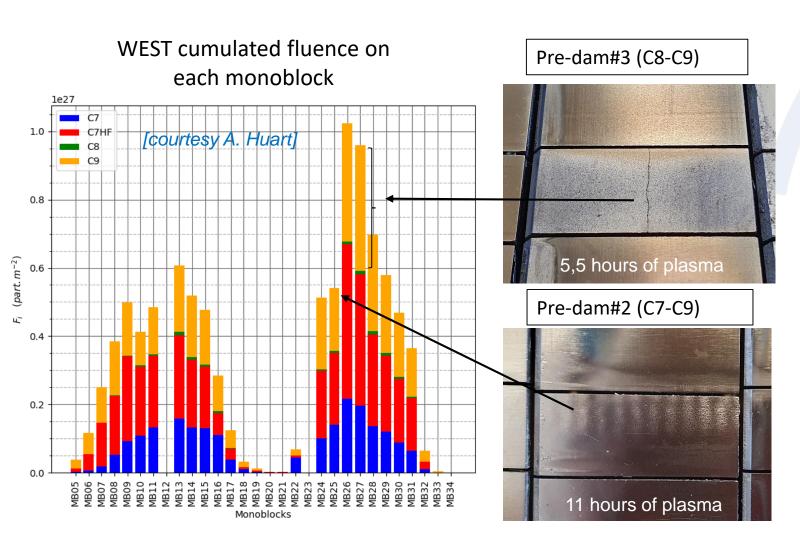
PWI modelling (SPD)

- WP TE (RT06, RT05, RT07 ...): dedicated PWI or plasma exhaust experiments, associated plasma background modelling (SOLEDGE, SOLPS, PIC modelling ...)
- WP PWIE (SPD): PWI modelling (ERO2.0, MEMOS-U, WallDYN ...) using WP TE plasma background NB: has to be adjusted at best, given available resources in TE/PWIE

Specific topics of common interest (SPX, SPF)

- Alternative Divertor Configurations (ADC) in the past (now RT07)
- Laser based diagnostics at JET: LID-QMS under TE, LIBS under PWIE
- Topics for ITER new baseline: boronisation (WP TE metallic fusion devices versus WP PWIE test devices)

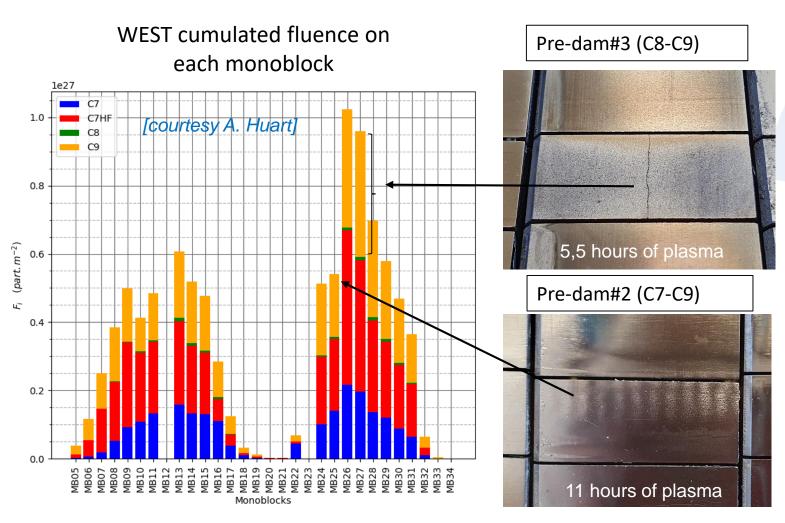
- How does WP TE work ?
- Recent <u>selected</u> highlights (RT06)
- Plans for 2025
- Summary and prospects for 26-27

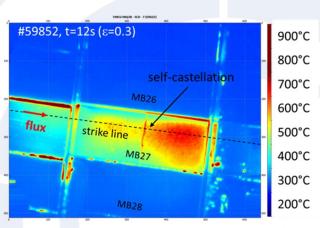

Not shown today:

- RT05 : XPR demonstrated in all TE devices (incl JET), work on impurity mix (N₂ → Ne, Ar), reduced model for divertor re-attachment
- RT07: continuation of exploration of ADC (MAST-U, TCV) showing continuum from SN to ADC, DN in WEST, AUG new upper divertor from 2025
- RT01/RT02: modelling of the wall sources (JET high current seeded scenario → ITER baseline)

Exposure of pre damaged components (WEST)

Damage evolution under tokamak conditions (combined heat/particle loads, disruptions, etc ...) > ITER divertor lifetime and failure mechanisms




- Components pre-damaged at JUDITH
 - Pre-dam#2 : crack network (transients)
 - Pre-dam#3 : macro cracks (steady state > 20 mW/m²)

Exposure of pre damaged components (WEST)

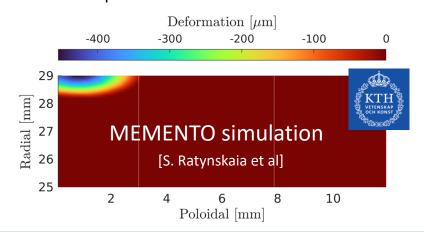
Damage evolution under tokamak conditions (combined heat/particle laods, disruptions, etc ...) > ITER divertor lifetime and failure mechanisms

VHR IR data (0.1mm/pixel)

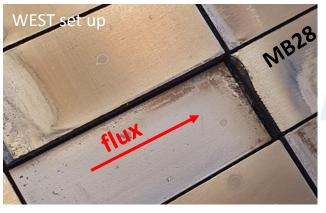
Exposure to hours of plasma in WEST

- > 1000 pulses, high fluence (~ ITER PFPO), max heat load 11 MW/m²
- No degradation of heat exhaust capability
- Components still in WEST for further exposure

→ Comparison of W monoblocks behavior in HHF facilities versus tokamak

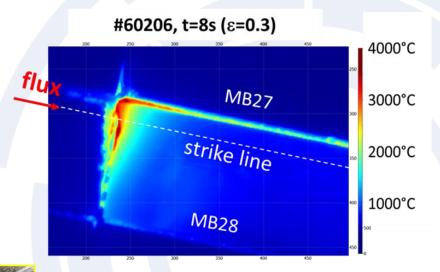


W melting experiments (AUG/WEST)


Gap bridging or infiltrating between monoblocks under steady state W melting (impact of currents flowing in subsequent disruptions?) + validation of codes used to predict melt layer motion in ITER



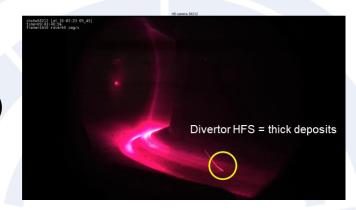
Experiment to come soon



[Y. Corre, ITPA DivSOL, October 2024]

- Gap bridging observed under WEST conditions, like in AUG previous experiments
- → Further validation of the MEMENTO code (used for ITER)

Preparing the next high fluence campaign (WEST)


Testing ITER divertor under tokamak conditions:

Plasma

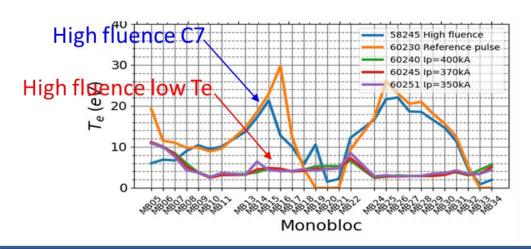
Divertor

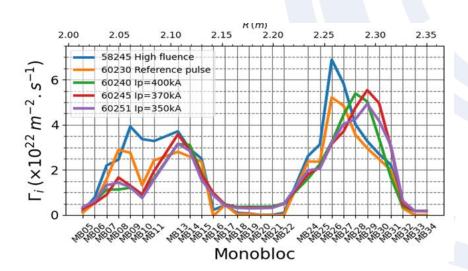
- First High Fluence campaign carried out under attached divertor conditions
 - ~ ITER PFPO shot particle fluence cumulated over ~1 month of long pulse operation
 - Prone to W erosion → thick deposited layers on the HFS (+ shadowed MB bevel areas)
 - UFOs (or TIEs) hampering plasma operation → laser cleaning developed

Preparing the next high fluence campaign (WEST)

Testing ITER divertor under tokamak conditions:

Plasma


Divertor

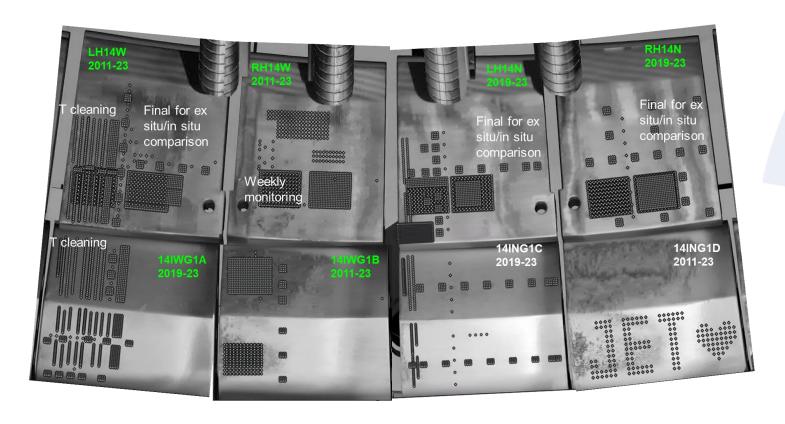

First High Fluence campaign carried out under attached divertor conditions

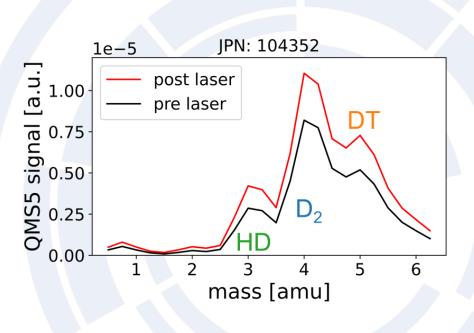
- ~ ITER PFPO shot particle fluence cumulated over ~1 month of long pulse operation
- Prone to W erosion → thick deposited layers on the HFS (+ shadowed MB bevel areas)
- UFOs (or TIEs) hampering plasma operation → laser cleaning developed

Second High Fluence planned in 2025 under cold divertor conditions

- Scenario developed (based on X Point Radiator with N₂ injection), under consolidation
- Divertor laser cleaning planned this summer
- High Fluence campaign planned in fall 2025

W-tracing by ERO2.0 global W density 1.00 0.75 0.50 -0.25 -0.00 -0.25 -0.50 -0.75 -1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4


→ Experiment ongoing in Magnum to better understand thick "WEST like" deposited layers flaking + IAP


[PhD A. Huart]

In situ measurements of fuel retention with laser based diags (JET)

Use of laser based diags in situ assessment of for fuel retention in ITER: demonstration under tokamak environment

- Extensive use of LID-QMS in JET DTE3 and subsequent clean up
 - First demonstration of in situ tritium measurements
 - Quantitative analysis ongoing

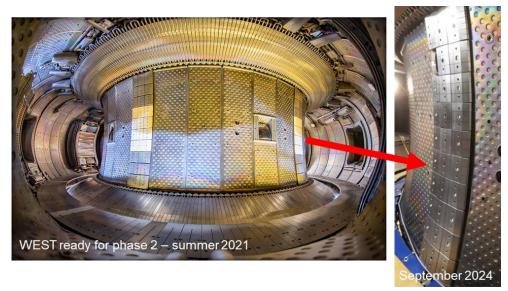
[M. Zlobinski, FEC2023, A. Widdowson, PSI 2024]

→ Comparison of LID-QMS (WP TE), LIBS and post exposure analysis of JET tiles (WP PWIE)

Uniform versus non uniform boronisation studies (AUG/WEST)

New focus as required for full W ITER configuration: Optimize boronisation parameters for ITER (electrodes, injection points, wall temperature etc → design) and assess frequency required (conservative IO estimate: up to once every 2 weeks)

Similar restart plan for both AUG/WEST


■ Test (briefly) start up without boronisation

■ WEST : new bulk W inner bumper tiles

AUG: new upper divertor, first restart after long shutdown and B cleaning

→ In both machines, start up w/o boronisation very slow and challenging (RE

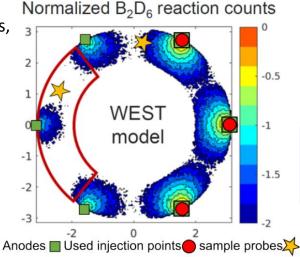
generation in AUG)

Uniform versus non uniform boronisation studies (AUG/WEST)

New focus as required for full W ITER configuration: Optimize boronisation parameters for ITER (electrodes, injection points, wall temperature etc → design) and assess frequency required (conservative IO estimate: up to once every 2 weeks)

Similar restart plan for both AUG/WEST

- Test (briefly) start up without boronisation
 - WEST : new bulk W inner bumper tiles
 - AUG : new upper divertor, first restart after long shutdown and B cleaning
- Perform non toroidally uniform boronisation
 - WEST: 3 of 6 injection points, ITER ref temperature (70°C), no collector probe available in 2024 (repeated recently with collector probe, exposing W and SS samples), LTS
 - AUG: 2 of 4 anodes, room temperature, samples exposed in manipulators + LTS + new QMB
- → After non uniform boronisation :


Start up much easier in both machines (WEST operated for ~1 month)

- Perform uniform boronisation
- → Sample / QMB data analysis performed in AUG :

Preliminary results indicate inconsistencies between QMB/samples, under consolidation

- → Samples from WEST now also available for analysis
 - → Comparison of B layers from tokamaks / PWIE devices

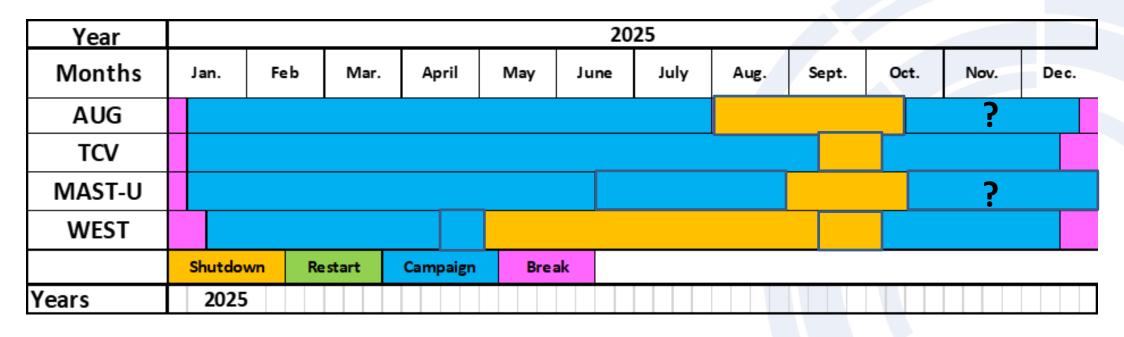
[V. Rohde, K. Krieger, S. Han, PFMC 2025]

[Courtesy T. Wauters, E. Geulin, FEC 2025]

Q4B (further from injection points)

[Courtesy M. Diez]

- How does WP TE work?
- Recent selected highlights
- Plans for 2025
- Summary and prospects for 26-27


WPTE 2025 program definition

High Level Objectives

- Address urgent issues related to ITER full W using TE metallic devices (AUG, WEST + JET): far SOL loads, W sources, screening and transport in pedestal, start up on W limiters, RE on W first wall, boronisation ...
- Exploit the PEX upgrade of AUG towards qualifications of ADCs at high P/R
- Modelling effort for extrapolation of results from TE devices to ITER / DEMO (e.g. ADC for DEMO, impurity mix for ITER ...)
- Prepare JT-60SA scientific exploitation (OP2 campaign end 2026, transition to W)

Planned device availability for 2025

- Busy year for WP TE with 4 devices running in early 2025
- New features: upper divertor AUG, ECRH on WEST, MAST-U cryopump

	TE fraction	Shot budget
AUG	50 %	584 (+ fall)
MAST-U	~35 %	346 (tbc)
TCV	40 %	1320
WEST	40 %	384

Experiments of interest for PWIE (RT06)

PFC evolution / damage under plasma exposure (2025 focus : high fluence II, impact of RE on first wall)

Fuel retention / recovery and vessel conditioning (2025 focus : boronisation, ICWC)

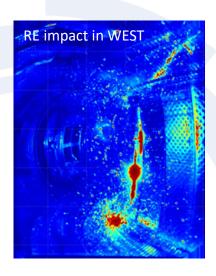
First part of 2025	
Fall campaign 2025	

AUG	# shots	WEST	# shots
Multi-scale melt dynamics across PFC gaps	10	Operation with actively cooled ITER-like PFU with crack network and self-castellation	20
W PFC damage induced by runaway electron incidence	10	W PFC damage induced by runaway electron incidence	10
Efficiency and lifetime of boronisation	7	Effect of spatially (non-)uniform boronization on plasma parameters, wall retention	25
Particle balance in AUG as a measure of global D retention following fresh GDB	3	Isotope wall changeover with ICWC	30
PSI characterization on Mo-coated antenna limiter tiles	4 (tbc)	ITER grade divertor behavior under high particle fluence campaign low Te div. regime	95
W erosion sources and global transport in Ne-seeded D2 plasma	10 (tbc)		

I campaign 2025 First part of 2025

Material migration (2025 focus: W first wall)

[Y. Corre and RT06 RTC, WP TE strategy meeting, Jan 2025]



- How does WP TE work?
- Recent selected highlights
- Plans for 2025
- Summary and prospects for 26-27

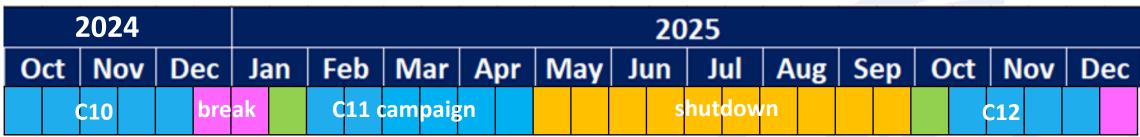
Strong links between WP TE and PWIE :

- Post mortem analysis of samples exposed in tokamaks
- Comparison of components behaviour under tokamak conditions versus HHF and linear devices
- Modelling of material migration / W melting and RE impact under tokamak conditions
- Boronisation (coordination between RT06 and SP F)
- → Exciting experiments coming ahead in AUG/WEST, wealth of data available from JET

Prospects for 2026-2027 :

- WP TE facing strong budget cuts (machine operation, manpower for campaign participation ...)
- BUT focus on ITER urgent R&D issues for the full W baseline: boronisation, W wall sources, screening, transport, start up on W limiters, impact of RE on W walls ...
- Usual WP TE call for proposals / participation to be launched in the fall, covering 2026-2027 :

You are welcome to participate!



Back up slides

Summary RT06 experiments in WEST and AUG for 2025

WEST

- Exposure of predamaged PFUs (VHR IR) #15+5
- Wall isotope changeover with ICWC #15+15
- Boronization studies (col. probes + efficiency + ret. + CAPS) #10+15
- Impact of RE beam (fast IR camera WA view) #10
- Scenario development HF2 #15

Divertor laser cleaning

- Remove RE damaged PFCs
- High fluence campaign low Te plasma (with fully cleaned div.) #80
- **Boronization studies WP TE** samples (collector probes) #0

WEST #100 in C11

WEST #80 in C12

AUG

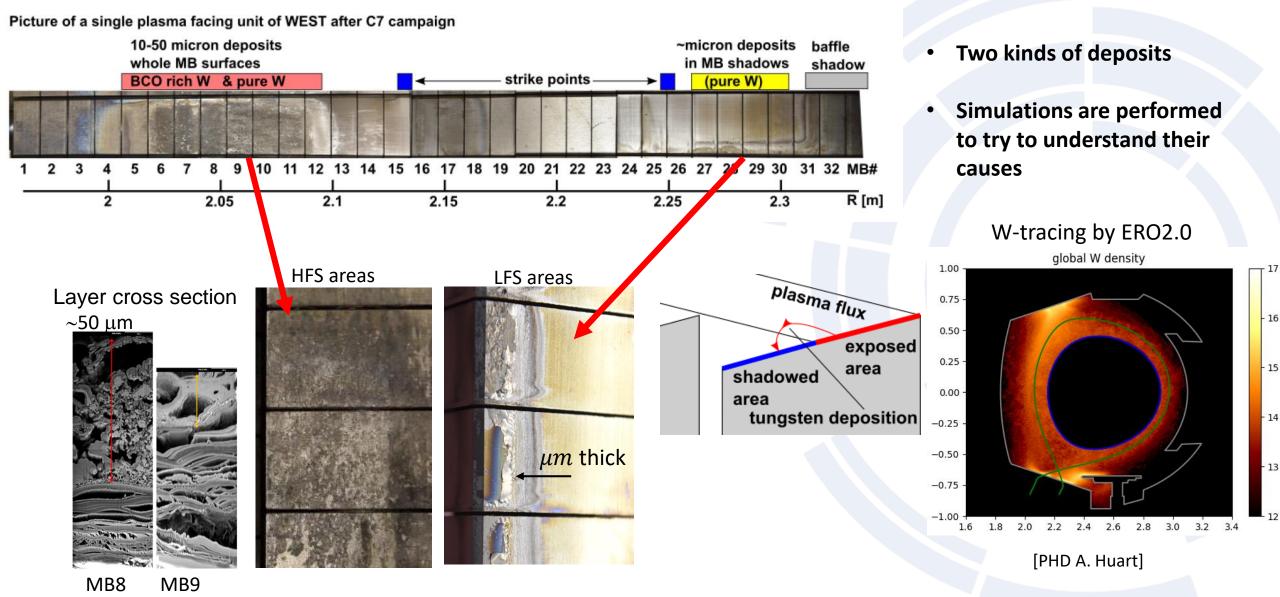
fall+campaign AD configurations dev. NBI box down break

Multi-scale melting exp.

- Multiscale melting exp. #10
- Boro. studies + particle balance + CAPS + mirror exp. #10
- Impact of RE beam #10

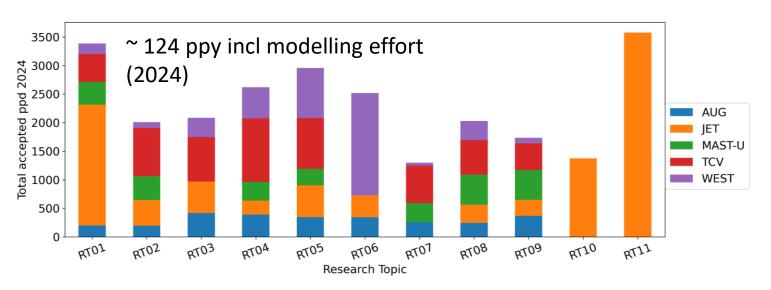
AUG: #30

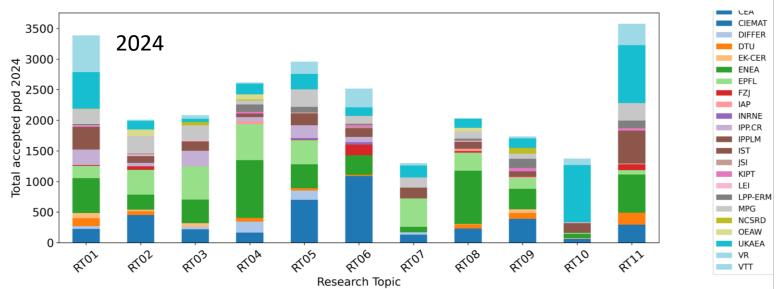
Option 2: if RE beam no feasible


- Multiscale-melting exp. #10
- Boronization studies + particle balance + CAPS #10
- W erosion sources in Ne-seeded plasma #6
- ICRH with Mo-coated antenna limiter #4

W erosion sources in Ne-seeded plasma #6 ICRH with Mo-coated antenna limiter #4

pending on available budget for RT06 and AUG operation (?)




Experimental observations after C7

WP TE in figures

- WPTE: cross-device program with strong contribution by EUROfusion beneficiaries (> 600 participants from > 20 labs)
- JET data validation/modelling/scientific exploitation still essential in WPTE strategy (significant backlog for data validation)
- Additional effort on modelling (interpretative + extrapolation to ITER/DEMO) started in 2024-2025
- In addition, ~10 ppy devoted to JT-60SA (RT12 to RT18) in 2024, rising in 2025