

"THEORY, SIMULATION, VERIFICATION AND VALIDATION"

TSVV TASK 7: PLASMA-WALL INTERACTION IN DEMO

WP PWIE Meeting | 27.03.2025 D. Matveev on behalf of TSVV-7 team

TSVV-07 PLASMA-WALL INTERACTION IN DEMO

Acknowledgements

- Christoph Baumann, Juri Romazanov, Michael Gordon, Henri Kumpulainen, Andreas Kirschner
- Svetlana Ratynskaia, Ladislas Vignitchouk, Panagiotis Tolias, Konstantinos Paschalidis, Rizzi Tommaso
- **Ales Podolnik**, David Tskhakaya, Michael Komm

Jonathan Mougenot, Yann Charles

Etienne Hodille, Floriane Montupet-Leblond, Jonathan Dufour, Remi Delaporte-Mathurin, James Dark

Udo von Toussaint, Klaus Schmid

Faith Kporha, Frederic Granberg

Jernej Kovacic, Stefan Costea

DEMO Central Team: Sven Wiesen, Fabio Subba, Jonathan Gerardin, Francesco Maviglia

Thrust 2 (WP PWIE) Facilitator: Sebastijan Brezinsek

Aims of the project

Establish an integrated modelling suite capable to treat complex 3D wall geometry to predict steady-state PWI in DEMO

Provide safety-relevant information for DEMO reference scenarios concerning first-wall erosion, dust, and fuel inventory

Develop and apply modelling capabilities to treat PWI in DEMO-relevant transients regarding their impact on PFC integrity

TSVV-07 PLASMA-WALL INTERACTION IN DEMO

Objectives

Assessment of

- Steady-state W erosion rates
- Preferential W re-/co-deposition locations
- Dust mobilization, survival and accumulation
- PFC response to transients: melting, splashing
- W erosion for locations affected by transients
- Tritium inventory: co-deposition, bulk retention

Codes and model development

ERO2.0

- \rightarrow PWI & impurity tracing
- MIGRAINe
- \rightarrow dust transport

MEMENTO

 \rightarrow transient melting

- BIT-1: high density divertor sheath for ERO2.0
- **SPICE:** thermionic emission for MEMENTO heat & particle fluxes to shaped PFC
- FESTIM & TESSIM: T retention & permeation
- **SDTrimSP, MD:** erosion yields, surface effects
- + Uncertainty quantification

Project overview paper

D. Matveev et al, Nucl. Fusion 64 (2024) 106043

PWI data and code capabilities improvement (in-brief)

SDTrim-SP

- "Gyro-motion" extension:
 - magnetic & electric field effects on impinging ions
 - implemented and verified against computations
 - performance optimization, experimental validation
- "Crystal" extension:
 - validated against MD, MARLOWE and experiment

sputter yield Cu/Ga sputter yield 2.5 0 2 4 6 8 10 12 14 30 keV Ga \rightarrow Cu (fcc) EXP SIM (100 40 (101) 40° [110] [100] 109 20° 30° crystal orientation

Sputtering data for D supersaturated W from MD

- Ar case studies accomplished: presence of D increases sputtering of W, strong grain orientation effect
- D and D₂ cases delayed by technical challenges (appropriate potential is slow, sputtering yield depends on the simulation cell depth, huge statistics required)
- Work on W-O / W-O-H potential development ongoing

Ô

Unprecedentedly large volume for extrapolation of plasma solution to the wall

Large extrapolation volume introduces large modelling uncertainties

Following assumptions in far-SOL:

- Exponential decay for densities
- Exponential decay for temperatures; but capped at 2 eV, 5 eV or 10 eV
- Uniform decay constant of 5 cm
- Constant Mach number

Dominating role of charge-exchange (CX) fluxes on erosion in the main chamber

Normally only poloidal profiles and mean energies are available from SOLPS-ITER

Former assumptions for sputtering:

• Using the **mean energy approach** (strong dependence of sputter yield on energy leads to incorrect erosion patterns)

Current approach - EDF:

 EIRENE post-processig of the SOLPS-ITER solution to provide energy-resolved neutral fluxes (angular-resolved in progress)

EDFs – Energy Distribution Functions

+ charge-resolved spatially non-uniform impurity ion fluxes (He, Ar)

Dominating role of charge-exchange (CX) fluxes on erosion in the main chamber (cont'd)

EDF approach: mean energy approach:

5

 D^{0} ightarrow W gross erosion flux [m⁻²s⁻¹] x 10¹⁶

0

 mean energy
 EDF

 peak flux [m⁻²s⁻¹]
 1.56x10¹⁷
 5.41x10¹⁶

 integrated rate [s⁻¹]
 5.75x10¹⁹
 2.76x10¹⁹

© C. Baumann PSI 2024

EDF approach:

- Reduction of main chamber gross erosion by factor 2-3 compared to the mean energy approach
- Additional wall area locations are subject to finite gross erosion

Erosion and re-deposition maps (T_e in far-SOL capped at 2 eV)

[10 ¹⁸ atoms/s]	net	gross	by D ⁰	by Ar ^{z+}	by W ^{Z+}
main chamber	-16.4	28.3	27.6	0.3	0.4
divertor	15.0	86.8	0.0	57.8	28.9

© C. Baumann PSI 2024

- Main chamber erosion dominated by CX neutrals
- Divertor erosion dominated by Ar ions and self-sputtering
- Strong transport from main chamber into the divertor (long ionization mean free path), no transport from the divertor
- Main deposition locations: inner and outer divertor, wall gap above outer divertor, top of the machine

Dust inventory evolution

Ratynskaia et al. Rev. Modern Plasma Phys. 6:20 (2022)

Metallic dust in fusion devices – safety and licensing issue (fuel retention, radioactivity, chemical reactivity)

Environmental data (wall geometry and plasma background)

Dust inventory evolution

DEMO scenario and addressed questions © L. Vignitchouk

- Using baseline 2017 equilibrium with SOLPS-ITER plasma
- Tracing dust with pre-defined grain size distributions and speeds
- Injection sites in the divertor and at the top of machine (ERO2.0)
- Vaporization dominant for small grains (<25 μm) along separatrix
- Dust accumulates primarily in corner-like geometries

Maps for W vaporization (ion drag activated, $r = 10 \mu m$, $v_{max} = 10 m/s$)

Evolution of dust spatial distribution in divertor (ion drag activated, $r = 40 \ \mu m$, $v_{max} = 50 \ m/s$)

Dust inventory evolution

DEMO scenario and addressed questions © L. Vignitchouk

- Using baseline 2017 equilibrium with SOLPS-ITER plasma
- Tracing dust with pre-defined grain size distributions and speeds
- Injection sites in the divertor and at the top of machine (ERO2.0)
- Iteration of single-discharge results to predict long-term inventory
- Initial velocity has major impact on the survival of particles

Total in-vessel remobilizable dust mass evolution with and without ion drag for various initial dust size and velocity distributions

PFC response to transient events

MEMENTO (<u>MEtallic Melt Evolution in Next-step TO</u>kamaks)

S. Ratynskaia et al. NME **52** (2022) K. Paschalidis et al. NME (2023)

- Successor of <u>MEMOS-U</u> implemented using AMReX adaptive meshing framework (https://amrex-codes.github.io/amrex/)
- Coupled heat transfer, fluid dynamics and current propagation + physics updates (surface tension, dynamo term)
- Critical input: heat loads and respective time scales (external input from WPDES & DCT)
 - description of escaping thermionic emission (multi-emissive* sheath treatment by SPICE2)

SPICE2 – a 2D3V PIC code (multi-emissive sheaths)

 Simulations of field-assisted thermionic emission (TE) with secondary electron emission (SEE) and electron backscattering (EBS) confirm the validity of the earlier developed semi-empirical scaling models M. Komm et al. NF 60 (2020)

P. Tolias et al. NF 63 (2023)

(*relevant for ITER/DEMO)

MEMENTO uses respective scalings deduced from PIC simulations

PFC response to transient events

Simulations of transient melting with MEMENTO

- Thermionic emission scaling laws provided by dedicated PIC simulations
- Addressing upper limiter damage under current quench with updated heat loads input accounting for time-dependent loading patterns
- Compared to 2023 PFCFlux input, ~10 times higher max heat flux values, up to 28 GW/m^2 (for 50% conversion from all poloidal magnetic energy)
- 10% conversion is judged as realistic, 50% as a worse case scenario
- No vapor shielding melting is robust, but erosion damage is not
- Escaping thermionic emission is within $\sim 2 to 3 \text{ MA/m}^2$ in both 10% and 50% scenarios, dominating over the halo current (Lorentz force)
- Instantaneous melt pools up to 0.3 0.5 mm depth
 –> prone to splashing

Fuel retention and permeation

Tritium retention and permeation with TESSIM and FESTIM

• First wall retention and permeation, in particular in view of tritium self-sufficiency (TESSIM-X): *K. Schmid et al, Nucl. Fusion 64 (2024) 076056*

Tritium (m⁻³)

1e+25 5e+24

2e+24 1e+24

5e+23

2e+23

1e+23 5e+22

- 2e+22 - 1e+22

100 dpa/FPY

0.64 dpa

- Implementation of the Soret effect: reduces T inventory and time to steady-state retention
- 3D effects (monoblocks): R. Delaporte et al, Nucl. Fusion 64 (2024) 026003
 - Outgassing at sides reduces retention (stronger for thin monoblocks)
 - Surface limited recombination reduces the efficiency of baking
- Neutron-induced traps: J. Dark et al, Nucl. Fusion 64 (2024) 086026
 - Increase retention / reduce permeation by orders of magnitude

no damage 1 dpa/FPY 0.064 dpa

T retention field after 200,000 s of plasma exposure for different neutron fluxes using FESTIM code with neutron damage model Ratio of T inventory with and without n-damage using FESTIM code

ACH support

- ERO2.0: optimization of hybrid parallelization performance and GPU enabling (ACH BSC)
- SPICE2: parallelization of Poisson solver in 2D (ACH BSC)
- MIGRAINE: HPC enabling via MPI parallelization (ACH VTT)
- RAVETIME: HPC optimization (ACH VTT)
- MEMENTO: HPC optimization (ACH VTT)
- IMASification: ERO2.0, MIGRAIN (ACH PSNC)

Acknowledgements

- ACH BSC: Mervi Mantsinen, Xavier Saez, Marta Garcia, Joan Vinyals, Alejandro Soba, Irina Gasilova, Augusto Maidana
- ACH VTT: Fredric Granberg, Jan Åström, Laurent Chone
- ACH PSNC: Dmytro Yadykin, Grzegorz Pelka, Natalia Grzybicka

Outlook and perspectives

Capitalize on dedicated experiments under WPTE: focused validation effort

- > Validation of steady state erosion in full W device with relevant divertor geometry and impurity seeding: ERO2.0 in AUG (approved)
- Validation of dust evaporation and impurity deposition: MIGRAINe + ERO2.0 in AUG (possible within AUG internal program)
- Validation of thermo-mechanical response of W PFCs under runaway electrons (REs): GEANT4 + MEMENTO in AUG (approved)

Address the frontier problem of PFCs damage by REs created during disruptions **v** to advance through collaboration with TSVV9

- > High sensitivity of PFCs response to REs impact characteristics can be obtained from nonlinear MHD codes such as JOREK
- Explosive W PFCs response under REs: GEANT4 (energy deposition) + MEMENTO (heat transfer) + LSDYNA (flow, fragmentation)

Expand the codes with reactor-relevant physics beyond the initial project scope

- > Effect of multiple isotopes on erosion and fuel retention/permeation for predictive simulations of reactor start-up and T clean-up
- Elaborating the neutron damage model from phenomenology to physics
- ERO2.0 coupling to core transport codes; edge turbulent transport effects on PWI **v** to advance through collaboration with TSVV4&6

Towards DEMO and beyond ✓ to advance through collaboration with WP-DES (plasma backgrounds with AI)

Framework test applications (VNS, DTT, BEST, ...) and development of surrogate models for iterative design-cycle applications

\checkmark to advance through collaboration with WPTE

✓ to advance through collaboration with WPPWIE

Thank you for your attention!