

WP PWIE SP D: Coordination 2025

Plasma background, impurity migration and neutral transport simulations for JET

Mathias Groth, Roni Mäenpää, David Rees, Pyry Virtanen, Aaron Vesa, Timo Kiviniemi Aalto University, Espoo, Finland

IPP Prague, Prague, Czech Republic Mar 27, 2025

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Analysis and publication plan for SP D 2025

SP D1 Plasma boundary modelling					
D006 Modelling (e.g. SOLPS-ITER or EDGE2D-EIREN input for migration modelling: JET	Modelling (e.g. SOLPS-ITER or EDGE2D-EIRENE) of background plasmas to be used as input for migration modelling: JET Aalt			3 PM	
• JET-ILW scenario simulations for Ni and W erosion → JET-ILW limiter plasmas Ni/W migration under			D002, ER r D003	02.0	
 JET He plasmas 	Horiz. and vertical target configuration, 1-5 MW \rightarrow ERO2.0 for W sputtering, transport				
 JET nitrogen transport and ammo formation 	onia				
SP D4 Neutral particles modelling					
Atomic and molecular fluxes spatially resolved to the wall surfaces (including divertor) in JET. Explore pressure range, sub-divertor geometry and conclusions for effective Aalto U pumping speed in JET					
 JET neutral dynamics using EIRENE, isotope effect 					
Explore pressure range, sub-divertor geometry \rightarrow effective pumping speed					

2 Mathias Groth | EUROfusion WPPMIE SP D Coordination Meeting 2025 | Prague, Czech Republic | Mar 24-27, 2025

Analysis and publication plan for SP D 2025

SP D1 Plasma boundary modelling						
D006 Modelling (e.g. SOLPS-ITER or EDGE2D-EIRE input for migration modelling: JET	Modelling (e.g. SOLPS-ITER or EDGE2D-EIRENE) of background plasmas to be used as input for migration modelling: JET Aalto U 3 PI			3 PM		
 JET-ILW scenario simulations for erosion → JET-ILW limiter plasmas 	simulations for Ni and W limiter plasmas Ni/W migration under D002, ERO2.0			\rightarrow	Pyry Virtanen M.Sc. thesis 2025 → PSI 2026	
 JET He plasmas 	Horiz. and vertical target configuration, 1-5 MW → ERO2.0 for W sputtering, transport			-5 MW	\rightarrow	David Rees, PhD thesis 2022-2026 → PSI 2026
 JET nitrogen transport and ammericant formation 	onia				\rightarrow	Roni Mäenpää, PhD thesis 2021-2026 → PSI 2026
SP D4 Neutral particles modelling						
Atomic and molecular fluxes spatially resolved to the wall surfaces (including divertor) in JET. Explore pressure range, sub-divertor geometry and conclusions for effective Aalto U 2 PM pumping speed in JET				\rightarrow	Aaron Vesa, M.Sc. thesis 2025 \rightarrow EPS 2025	
 JET neutral dynamics using EIRE 	NE, isotop	e effect				
Explore pressure range,	, sub-divert	or geometry \rightarrow effectiv	e pumpir	ng speed		

3 Mathias Groth | EUROfusion WPPMIE SP D Coordination Meeting 2025 | Prague, Czech Republic | Mar 24-27, 2025

Ni and W erosion and deposition were predicted for representative plasma configs. and scenarios in the JET-ILW campaigns 2011-2015

 Deuterium plasmas, EDGE2D-EIRENE density scan at low (2 MW) and moderate (up to 15 MW) heating power

- Deuterium plasmas, JINTRAC (including EIRENE) density scan at low (2 MW) and high (up to 25 MW) heating power
- Inter and intra-ELM time slices for subset of density/power scans

 Deuterium plasmas, EDGE2D-EIRENE density scan at low (2 MW) and moderate (up to 10 MW) heating power

Pyry Virtanen et al., PSI 2024 \rightarrow NME 2025

Campaign-representative plasma scenarios were analysed for their approximate durations in the JET-ILW campaigns 2011-2015

Configuration	LFS-	P_{in} (MW)	Total time
	midplane		(s)
	density		
	$(1e19 m^{-3})$		
	0.85	2.2	30125
	1.8	2.2	12965
	2.0	4.8	1880
V5	4.0	4.8	1668
	3.6	6.6	2397
	3.4	10	3716
	3.4	15	723
CC	0.85	2.2	34112
	1.5	6	3877
	2.5	14	2426
	1.6	24	454
VC	0.85	2.2	28096
	1.8	6	3263
VV	0.85	2.2	9971
	4.0	14	1764

- Existing EDGE2D-EIRENE and core-edge coupled JINTRAC cases were expanded in density and auxiliary power
- Limiter configurations, albeit at low heating power, account for approximately 30% (68409 s) of the total plasma time: HFS / LFS limited = 22707 / 45702 s
- ⇒ 2024: develop dedicated limiter configurations for SOLPS-ITER based on two representative limiter configs. from 2011 (c.f., G. Arnoux et al., NF 2013, C. Silva et al., NF 2014)

Pyry Virtanen et al., PSI 2024 \rightarrow NME 2025

2024: JET limiter plasmas were simulated using a 2-PM/OSM (including internal grid generation) ⇒ CARRE grid for SOLPS-ITER (EIRENE CX fluxes)

6 Mathias Groth | EUROfusion WPPMIE SP D Coordination Meeting 2025 | Prague, Czech Republic | Mar 24-27, 2025

2025: perform SOLPS-ITER density and power scans in HFS and LFS limited configuration ⇒ extract CX fluxes for ERO2.0 Ni, W erosion and migration

Pyry Virtanen

- First proof-of-principle SOLPS ITER runs achieved for HFS limited case → setup and
 predicted plasma parameters
 being cross-checked with David
 Coster and Xavier Bonnin
- Using ERO2.0, CX atomic flux contributions from limiter configurations to campaignintegrated Ni, W and Be migration topic of Pyry Virtanen's M.Sc. thesis in 2025 → PSI 2026

Set of He L-mode plasmas was performed in JET-ILW in C43 (Oct 2022) to elucidate atomic and molecular physics for detachment (RT-He-04)

- Single I_P / B_T pair: 2.5 MA / 2.5 T
- V5/C and VT configuration, optimized for diagnostics and edge modelling
- Ohmic and NBI (He) heating up to 5 MW; D 1.0 MW
- He: Ar-frosted cryo panel for improved density control
- D and He injection through divertor G/TIMs: fuelling ramps and steps
- ⇒Initial measurement analyses presented at PFMC 2023 and PET 2023 by David Rees → interpretation using SOLPS-ITER prepared for PSI 2026
- C.f., additional configurations, machine setup and plasma conditions under RT-He-03 (limiter config., Be monitoring pulse at 2.0 MA / 2.0 T, V5/B for W fuzz) and RT-He-17 (RISP and corner configurations)

SOLPS-ITER simulations of He vs D plasmas qualitatively consistent with measurements (70% lower I_{div,LFS} in He) due to 1.5-3x higher eff. ionisation cost

David Rees \rightarrow PSI 2026

(Global) power balance: qualitatively, higher core radiation (He²⁺) leads to stronger reduction in P_{SOL} in He than in D plasmas

D Drifts He He Drifts He 5MW He 5MW Drifts

- 2x lower radiative power predicted by SOLPS-ITER, for both D and He (general edge modelling issue)
- Inclusion of cross-field drifts and currents pushes radiative collapse of solution to higher separatrix densities in He plasmas
- C.f., in experiments, He plasmas have lower density limits (wrt. line-averaged edge densities)

Predicted line-integrated power lower than measured not artifact of tomographic reconstruction, isolate issue to inner divertor / X-point region

David Rees \rightarrow PSI 2026

- For deuterium, drifts increase $\int P_{rad}$ across inner divertor, but reduce $\int P_{rad}$ across outer divertor
- \Rightarrow Next analysis step: compare (KS3, KT3) He I and He II emission

Predicted power to LFS divertor plate consistent with IRTV measurements for 1MW D and He plasmas, factor of 2 higher for 5 MW

Inclusion of fast-reflected N ions in ERO2.0 increases N penetration ⇒ assessment of N reflections via MD sims. for pure-W vs NW surfaces

Roni Mäenpää et al., PSI 2024 → NME 2025

Ther. recycl. + fast reflections

- N-on-WN with SBE = 5.1 eV, best estimate for surf. composition and binding energy
- N-on-W with SBE = 8.8 eV, a lower estimate for reflection coefficients
- 3 incidence angles have been tested (50, 60 and 70 degrees wrt the surface normal)
- P_{rad, N} insensitive to (reasonable) choice of SBE, BCA vs. MD, impact angle

Initial ERO2.0 simulations of ammonia formation in JET-ILW: ND emission 50% above (KER = 1 eV) or 25% below (KER = 10 eV) measurement

- Agreement of measured and predicted ND emission achieved by fitting the N II 500 nm peak line emission ⇒ 50% conversion rate of N radicals to ND₃
- Calibration of KT3 and fitting of measurement data significant challenge, yet uncertainties in the kinetic energy release values much more significant

Time-dependent EIRENE simulations of gas-into-(empty) vessel calibrations in JET \Rightarrow vacuum conductance and pumping speed for H₂, D₂ and T₂

Aaron Vesa \rightarrow EPS 2025, M.Sc. thesis 2025

- I. Jepu (UKAEA): dedicated gas-into-vessel calibs.
 for H₂, D₂ and T₂ with divertor cryo sc-He/LN₂ temp, torus isolation valves for divertor turbo-molecular pumps open/close, NBI torus isolation ("rotary") valves open/close in autumn 2023
- Time-dependent EIRENE on full-device grid, including sub-divertor structures (louvres), actual injection locations, pump locations and speeds, valves open/closed
- ⇒ Simulate pressure rise and pump-out ⇒ compare predicted to measured p_{sub-div} to validate SOLPS-ITER assumptions ⇒ simplify sub-divertor geometry (c.f., A. Scarabosio, A. Zito for AUG)

Sub-divertor louvres inhibit gas flow to pump / ability to control plasma density by factor of two

1.00E-02

5.00E-03

0.00E+00

0.001

no louvre

0.01

 Standalone EIRENE simulations of gas dynamics in JET sub-divertor (sealed-off at subdiv.) \rightarrow impose gas influx at divertor/subdivertor partition based on previous

Ability to pump

0.1

Raising isotope mass from H2 to D2 and T2 reduces thermal velocity, thus molecular pressure by factor square root of mass upstream of louvres

- Louvres reduce conductance for heavier gases → downstream/upstream pressure ratios increase with isotope mass by √2 and √3 for D₂/H₂ and T₂/H₂
- Presence of secondary louvres reduces pressure downstream of from them (gauge location) by 10-20% only

Analysis and publication plan for SP D 2025

SP D1 Plasma boundary modelling				
D006Modelling (e.g. SOLPS-ITER or EDGE2D-EIRENE) of background plasmas to be used as input for migration modelling: JETAalto U3 PM			n	
 JET-ILW scenario simulations for I erosion → JET-ILW limiter plasmas 	Ni and W In addition: CX under Ni/W migration und	er D002, ERO2.0 er D003	÷	Pyry Virtanen M.Sc. thesis 2025 → PSI 2026
 JET He plasmas 	Horiz. and vertical target config \rightarrow ERO2.0 for W sputtering, tra	guration, 1-5 MW	÷	David Rees, PhD thesis 2022-2026 → PSI 2026
 JET nitrogen transport and ammondation 	onia		\rightarrow	Roni Mäenpää, PhD thesis 2021-2026 → PSI 2026
SP D4 Neutral particles modelling				
Atomic and molecular fluxes spatially resolve D002 in JET. Explore pressure range, sub-divertor g pumping speed in JET JET and AUG neutral dynamics using	red to the wall surfaces (including divertor) geometry and conclusions for effective g EIRENE, isotope effect	Aalto U 2 PN	1 →	Aaron Vesa, M.Sc. thesis 2025 → EPS 2025
Explore pressure range,	sub-divertor geometry \rightarrow effect	ive pumping spee	d	

18 Mathias Groth | EUROfusion WPPMIE SP D Coordination Meeting 2025 | Prague, Czech Republic | Mar 24-27, 2025

- Further characterisation of JET H-mode scenarios for W erosion and migration:
 - H, D, T, DT isotope effect
 - (Characterisation, impact of) scrape-off layer flows
 - Re-erosion and re-deposition of W
 - Impact of ELMs
- JET He plasma \rightarrow erosion studies
- Conversion of D₂ Fulcher band emission to D₂ influxes for dedicated GIM 14 injection experiment using SOLPS-ITER/EDGE2D-EIRENE and EIRENE (JET experiment B18-17)

Energy-resolved CX fluxes to the wall predicted by EIRENE: raising the core plasma density by 2x, EIRENE predicts up to 50x lower high-energy CX atoms

\bigcirc

ERO2.0 predicted gross deposition of Ni onto tile 1 is of the order of 1019/cm2, of the same order of magnitude as measured post-mortem

Pyry Virtanen et al., PSI 2024 \rightarrow NME 2025

- EDGE2D-EIRENE to background plasmas (including flow) and CX atomic fluxes
- ERO2.0 to predict nickel erosion, transport and deposition in the JET-ITER-like-wall through years 2011-2016
- Primary erosion location on the vacuum vessel wall is predicted to be on the LFS near the midplane
- Nickel is transported onto the HFS divertor top ⇒ single deposition (no re-erosion yet assumed)

SOLPS-ITER simulations of He vs D plasmas qualitatively consistent with measurements (70% lower I_{div,LFS} in He) due to 1.5-3x higher eff. ionisation cost

David Rees \rightarrow PSI 2026

Sub-divertor louvres inhibit gas flow to pump / ability to control plasma density by factor of two

Ability to pump

Raising isotope mass from H2 to D2 and T2 reduces thermal velocity, thus molecular pressure by factor square root of mass upstream of louvres

- Louvres reduce conductance for heavier gases → downstream/upstream pressure ratios increase with isotope mass by √2 and √3 for D₂/H₂ and T₂/H₂
- Presence of secondary louvres (not shown) reduces downstream of them (gauge location) by 10-20% only

Raising isotope mass from H2 to D2 and T2 reduces thermal velocity, thus molecular pressure by factor square root of mass upstream of louvres

- Louvres reduce conductance for heavier gases → downstream/upstream pressure ratios increase with isotope mass by √2 and √3 for D₂/H₂ and T₂/H₂
- Presence of secondary louvres reduces pressure downstream of from them (gauge location) by 10-20% only