

WP PWIE meeting 2025

TSVV Task 5: *"Neutral Gas Dynamics in the Edge"* 27.03.2025

D. Borodin et al.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The EIRENE MC code: related packages and tools

EIRENE code (PLOUTOS and other tools) http://www.eirene.de/

FZJ is EIRENE origin, however fluid side of EIRENE-CFD packages often are developed elsewhere, e.g.:

- 2D SOLPS-ITER (B2.5-*EIRENE*)
- 3D EMC3-EIRENE
- SOLEdge3X-EIRENE (with turbulence)
- many others ...

The atomic/molecular data accumulations were for decades supported by IAEA **Hydhel, H2Vibr, AMJuel, <u>Hydkin</u> - PLOUTOS** (new) **ADAS (external)**

Eirene with the infant Ploutos

Statue by Cephisodotus the Elder

Glyptothek, Munich.

TSVV-5: Neutral Gas Dynamics in the Edge

Main simulation tool: EIRENE code (and EIRENE-CFD packages) http://www.eirene.de/

We aim to transform it to IM- and HPC-ready neutral gas module (*EIRENE-NGM*) suitable for simulations on ITER and DEMO scale with large focus on (semi)detached divertor plasmas

What is EIRENE in a nutshell (e.g. in SOLPS)?..

Photon tracing: Ly- α and Ly- β opacity \rightarrow D ionisation

Photon absorption adds up to ~20% of total CR ionization rate in detached conditions

'Extra' ionization contribution from Ly- α and Ly- β photon absorption:

- → increases population of excited D neutrals
- ➔ extra ionisation

Photon tracing: Ly-lines opacity \rightarrow Balmer emission

Ly- β opacity enhances D_{\alpha} emission by 50%-100% in the LFS strike point of JET-ILW L-mode plasmas in high-recycling and detached conditions

Sight lines of the vertically viewing scanning mirror VUVvis imaging spectroscopy system (KT1) in JET-ILW superimposed on the SOLPS-ITER grid. Blue lines are strike point locations.

- EIRENE Ly- α and Ly- β photons tracing module applied to JET-ILW SOLPS-ITER L-mode plasma stationary solutions with increasing $n_{e,sep}$ densities
- Line-integrated D- α emission using KT1 sightlines, separated by contributions from external densities and by Ly- β absorption ($n_{ph,p=3}$), negligible effects on the inner strike point

R. Chandra et al., PSI 2024

Fluid-kinetic hybridization (FKH)

A hierarchy of neutral models:

D.V. Borodin et al., FEC-2020, NF (2022)

Accuracy

F-K Hybridisation approaches utilized in EIRENE-NGM

Recent progress with micro-Macro (JET L-mode case)

Purely micro-macro (mM) approach for rectangular slab geometry with fixed background plasma

Micro-macro combined with spatially hybrid approach (Sp-mM) → factor 5-10 faster than full kinetic!

- Realistic geometry, void regions
- Coupling to kinetic molecules
- Coupled plasma-neutral simulations

Actual DEMO simulations (with NCC) [KU Leven]

DEMO simulations – actual results [KU Leven]

"D-only" case:

- → only time steps 1^e-4s and 1^e-5s for P/100 lead to a qualitatively wrong solution
- no noticeable effect of n-n collisions on convergence behaviour
- → bias decreases monotinically with Δt

Preliminary: <u>Multi-species</u> cases appear to have <u>much larger bias</u> than D-only case. Improved source averaging and time stepping schemes under investigation

General code development of EIRENE – EIRON (ACH-VTT)

On the right: the data flow between subdomains

If a histogram is yellow or red, it indicates a bottleneck.

- EIRENE "toy model" EIRON and profiling of EIRENE
- Test of parallelisation and domain decomposition schemes
- → Can be used for other purposes e.g. optimisation of ML-KDMC

EIRON (ACH-VTT, O.Lappi) – bottleneck analysis

First runs on ITER scale – performance challenges [AMU/CEA]

ITER FPO performance challenges – analysis [S.Kumar, CEA] 🔘

Longest trajectories simillar and dominated by elastic neutral-neutral collisions

ISTRA: 1

ISTRA: 4

- > Longest trajetories are for recombination and recycling strata for particles trapped under the dome.
- Elastic collisions dominate the collision count for the longest trajectories.
- > Trajectories much shorter when turning off neutral-neutral collisions.

EIRENE application to Magnum-PSI

- Comparison of SOLPS-ITER (B2.5-EIRENE) with
- B2.5-ENOMIA
- Aim: transfer all the useful development into EIRENE
- Main differences are identified to be in CRMs (MAR, EI, EC) – direct comparison is often not possible.
- New FEM model for PWI in EIRENE (based on FreeFem++)
 Aim: treat self-consistently temperature and sputtering, absorption and outgassing, recycling, transients (timedependent simulations)

Comparison with TS profiles near the target

EIRENE: collisional-radiative model (CRM) challenges

EIRENE often uses effective ("condensed") rates tabulated from a CRM.

- \rightarrow isotopes: D₂, T₂, H₂, DT, HD, ..., Be-H/D/T, N-xxx, ...
- \rightarrow vibrational (and rotational) states in molecules
- → treating non-stationary effects e.g. metastables (MS) in atoms (e.g. He)

- → improving performance for simulations on ITER/DEMO scales
- $\rightarrow\,$ facilitate UQ and design with EIRENE
- \rightarrow control the exploding amounts of data

PLOUTOS web-based tool for A&M data processing (FZJ)

Both statues are at Glyptothek, Munich.

- to import/export data (JSON, tabular, etc.)
- to produce input data for EIRENE and for other codes with CRMs
 - ➔ load/improve/save the developed configuration (selected reactions and parameters) including starting from the standard pre-sets
- to check data for consistency and abnormal features

• do sensitivity studies:

➔ understand A&M side of the problem and identify the most significant processes (among the selected ones)

The table contains data sources and type(s), "generation", other info ...

 \rightarrow we plan adding simulation case references.

D.V.Borodin | WP PWIE meeting 2025 | IPP CR | 27.03.2025 | Page 18

EIRENE

PLOUTOS interface – (H₂ 2022/23 case)

JÜLICH Forschungszentrum

CRM FOR MOLECULES: leading reactions

ÜLICH

EU-DEMO and **JET** – effect of resolution by vibrostates

- ➔ MAR/MAD branching ration modelling results significantly depend on resolution by vibrational states in H₂
- → So as other parameters such as total ionisation rate in the volume

F.Cianfrani et al., EPS-2022

Fully in line with the EIRENE and other CRMs:

JET modelling: "Up to 40% reduction in effective dissociation rate due to transport of vibrational states"

A.Holm, M.Groth, et al., PET, CPP 2021

New CRM Solver for EIRENE – "ModCR"

- This CRM is aimed to precompute rate coefficients accounting for **all parametric dependences** (n_e, T_e, but also T_i, ...) in contrast with currently used polynomial fits (AMJUEL, ...) + add a number of levels/processes not accounted for at this time
- The **internal states** (e.g. rovibrational states in molecular species) are to be tracked with a flexible a flexible control over this resolution (as separate specie or variable).
- The **nonstationary solution** for balance equations should be the default one (with the stationary only as a useful option).
- The solver should be **modular**, thus **usable standalone** or even in **various codes**.
- The **improved A&M** data input (encapsulated data JSON, potentially also HDF5). We need tools for visualisation and testing.
 - Meet the exploding amounts of data for molecules (with resolution by rovibrational states)

Not only performance and reliability, but additional physics can be provided! → For instance, what if detachment is caused by non-stationary effects?!..

ModCR interaction with EIRENE and other tools

Summary: TSVV-5 progress and plans

Physics

- Fluid-kinetic hybridisation (FKH) development successfully continues incl. new branches (KDMC)
- A&M CRM extension and refinement (Ploutos + ModCR, photon tracing opacity)
- Establishing simulation cases (validation at JET, Magnum-PSI, verification at ITER and EU-DEMO scales with realistic geometry) in progress incl. with new features FKH etc. Time-dep. runs

Code development

- Parallelisation: OpenMP-MPI hybrid (related code refactoring done; EIRON "toy"-model (ACH-VTT) allows testing CPU loading and domain decomposition approaches so as new FKH options)
- Code streamlining (Segregation of the numeric core, etc.) good progress, new big changes (e.g. ModCR substituting CRM part in the inner loop) concepted and progressing.
- Merging all existing versions into first milestone one (MsV) released in Nov 2024
- Improved I/O (JSON/HDF5), visualisation, IMAS ification, etc. done or in good progress (with ACH)

Organisational and techical items

- New EIRENE license, "infectious open source", Coding guidelines, ChangeLog, JSON schema (STYX), improved CI - available at <u>www.Eirene.de</u> and as part of EIRENE Git repo, good progress
- Regular VCs and annual Code Camps, also strong and regular communication with ITER, IAEA and neighbour TSVVs (mostly 3 and 7, but also others).

see M.Groth talk

Thanks for the attention!

Standalone CRM vs EIRENE (statistic issues)

JÜLICH Forschungszentrum