

Data analysis of Aryelle spectra and methods at ENEA

Salvatore Almaviva (ENEA)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Depth profiling data analysis of the plasma facing components (PFCs):
- Expected Results and information
- Calibration free analysis
- Expected results and information
- Conclusion

- These scripts are developed in a MATLAB[®] environment and sequentially process the LIBS spectra acquired with the Aryelle «full range» spectrometer, preliminarily converted into '.txt' files.
- The conversion of the data from the proprietary format ('.ary') to '.txt' has been performed by using the "sophy nXt" proprietary software of the Aryelle

the operating scheme of the procedure is illustrated below:

Read Aryelle txt file (sequentially)

Look for representative emission lines of peculiar chemical elements

Compute the integral intensities (IIs.) of the emission lines

Store and save the IIs. of the lines

Display the IIs. as a function of the laser shots

A MATLAB procedure has been developed to perform multiple depht profiling analyses of the acquired spectra looking at intense and free of interference emission lines of the elements.

```
tic;
clear all
d=dir('C:\Users\Almaviva-ENEA\Desktop\file matlab aggiornati funzionanti'); % path to your files
l = length (d);
ind PCA = 0;
for i =1:1
   namefile = d(i).name
   k = strfind(namefile, '.txt');
    if k \ge 0
                                                                             'for' cycle to look for '.txt' files in the folder
      ind_PCA = ind_PCA +1; #spectra counter
      read_Aryelle_files; peak analysis function
    end
end
delete file appoggio.txt;
figure(3)
x axis = linspace(1, ind PCA, ind PCA);
plot(x axis,Be I 332 11nm,'-b',x axis,Be I 457 27nm,'-b',x axis,W I 400 87nm,'-k',x axis,W I 407 45nm,'-k',x axis,T D H 656nm,'-ro'
legend("Be I 332.11nm","Be I 457.27nm","W I 400.87nm","W I 407.45nm","T-D-H alpha 656nm","Mo I 550.65nm","Mo I 553.3nm","Mo I 557.0
xlabel('number of laser shots')
ylabel('Integral intensity (a.u.)')
figure(4)
x axis = linspace(1, ind PCA, ind PCA);
semilogy(x_axis,Be_I_332_11nm,'-b',x_axis,Be_I_457_27nm,'-b',x_axis,W_I_400 87nm,'-k',x_axis,W_I_407_45nm,'-k',x_axis,T_D_H_656nm,'
legend("Be I 332.11nm","Be I 457.27nm","W I 400.87nm","W I 407.45nm","T-D-H alpha 656nm","Mo I 550.65nm","Mo I 553.3nm","Mo I 557.0
xlabel('number of laser shots')
ylabel('Integral intensity (a.u.)')
fclose all:
toc;
elapsedTime = toc;
```


A list of the emission lines considered for each element is shown below. The rationale for choosing these lines is that they should be intense and as free from interference as possible.

Atiom/Ion	Wavelength (nm)	Motivation
Be I	332.12	Be deposits on the divertor
Be I	457.27	area
WI	400.87	W substrate and redeposited
WI	407.44	material from erosion
T_{α} - D_{α} - H_{α}	656-656.3	Unburned (or implanted) fuel
Mo I	550.65	
Mo I	553.3	Mo interlayer (if present)
Mo I	557.04	
Cr I	425.43	Income structure meterial
Cr I	428.97	inconel structural material
Ni I	341.47	
Ni I	345.85	Inconel structural material
Ni I	346.16	
He I	587.58	Reaction product

A MATLAB procedure has been developed to perform multiple depht profiling analyses of the acquired spectra looking at intense and free of interference emission lines of the elements.

The entire output is displayed in two graphs showing line intensities as a function of laser shots, both with linear and semi-logarithmic scales. Graph can be saved in common graph formats (e.g. .tiff or .jpeg) and data in .txt format for further analyses or processing.

775_14ONG8A_R2C2

Depth profiling data analysis: Expected Results and information

With these procedures the following information on the PFCs of the divertor can be obtained:

- 1) thickness of the layer of redeposited material as a function of the applied laser shots along the whole divertor profile
- 2) Presence of unburned fuel (T+D) and its distribution in-depth
- 3) possible traces of eroded structural materials (mainly Ni and Cr from Inconel steel)
- 4) Intensity ratio T+D+H/W for qualitative in-depth distribution of T+D+H

Ex: LIBS at JET. Point 59_HFGC_LH14W_R1C1

The procedure takes a few seconds per spectrum to complete, the processing time depending on the performance of the PC used. Ex. this PC (CPU intel core i5, RAM 8 GB) = **293.5 sec for 200 spectra**

📣 MATLAB R2023b		- 🗆 X	-
HOME PLOTS APPS EDITO	R PUBLISH VIEW	1 🕐 💿 Search Documentation 🛛 🔎 봊 Salvatore 🗸	
Image: Print with the second seco	⁶ / ₄ ⁶ / ₄ Refactor ⁶ / ₄	-	
HLE NAVIGATE	CODE ANALYZE SECTION RUN	× 0	
Current Folder	Jesskop - induzioaggiornaujuatoininta - generative anti-anti-anti-anti-anti-anti-anti-anti-	Workspace	
Name ≜	Control Con	Name Value	
775, 140NG8A, RXC2, 140NG8A, RXC2, 064.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 065.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 065.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 065.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 069.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 070.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 070.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 070.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 073.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 075.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 080.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 083.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 083.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 084.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 084.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 084.txt 775, 140NG8A, RXC2, 140NG8A, RXC2, 085.txt 775, 140NG8A, RXC2,	<pre>tic; clear all dedir('C:\Users\Salvatore Almaviva\Desktop\file_matlab_aggiornati_funzionanti'); % path to your files l = length (d); ind_PCA = 0; for i =1:1 namefile i d(i).name k = strfind(namefile, '.txt'); if k >= 0 ind_PCA + 1; read_aryelle_files; end delete file_appoggio.txt; figure(7) x_axis = linspace(1,ind_PCA,ind_PCA); plot(x_axis,C_II_426_7nm, '-*',x_axis,Be_I_457_27nm,'-b',x_axis,Be_I_332_13nm,'-b',x_axis,W_I_400_87nm legend('C II 426.7nm', 'Be I 457.27nm', 'Be I 332.13snm', 'W I 400.87nm', 'W I 407.06nm', '1-D-H alpha 656r ylabel('Integral intensity (a.u.)') figure(8) v avie = linenara(1 ind_PCA):</pre>	Image: Constraint of the second sec	Outputs: (in light blue) IIs of the emission Lines as a function of The applied laser shots
775_14ONG8A_RXC2_14ONG8A_RXC2_087.txt	New to MATLAB? See resources for <u>Getting Started</u> .	× III Ni_I_341_48nm 200x1 double	
775_140NG8A_RXC2_140NG8A_RXC2_088.txt	'smoothing_multiplo_Aryelle.m'	↑ I_D_H_656nm 200x1 double	
No details available	namefile = 'subtract_background_Aryelle.m'	W1_400_87nm 200x1 double W1_407_06nm 200x1 double x 4/3365x1 double x, axis 1x200 double y 40306x1 double	
	Elapsed time is 293.532190 seconds. fx >>	v <	

Depth profiling data analysis: Expected Results and information

The information obtained concerns the presence and thickness (preliminarly in terms of laser shots) of the layers deposited on the surface of the divertor PFCs, the in-depth distribution of nuclear fuel and any erosion phenomena of the PFCs.

The average ablation rate for Be has been estimated on point 702_IWP_808_R1C1: 8 μ m Be coating on Inconel steel \approx 50 shot \rightarrow AAR 160 nm per shot

Calibration free analysis: Matlab procedure

The CF procedure (Appl. Spec. 53(8), (1999), 960-964) aims to quantitatively estimate the chemical elements detected in the LIBS plasma. CF will be applied to estimate the concentration of T+D+H (the latter being present as residual impurity in the spectrum) respect to W (bulk material of the divertor PFCs) and respect to Be (bulk material of the first wall and major eroded material on the divertor PFCs).

CF is based on the experimental intensities of the emission lines.

Indeed, if the LIBS plasma can be considered in local thermodinamic equilibrium (LTE) these intensities can be expressed as follows:

$$I_{\lambda}^{ki} = C_s A_{ki} \frac{g_k e^{-(E_k/k_B^T)}}{U_s(Te)}$$

where, $I_{\lambda}^{ki} = \exp$. intensity of the k \rightarrow i transition, $C_s =$ concentration of the species, A_{ki} = transition probability for the given line, g_k is the k level degeneracy, E_k the upper energy level of the transition, k_B^T = Boltzmann constant, $U_s(T)$ is the partition function for the emitting species at the plasma temperature T_e .

The emission lines of each species can be plotted as points in a graph (**Boltzmann plot, BP**) and their linear fits give an intercept, q_s which is related to the relative concentration of the species through the following equation:

$$C_s = \frac{U_s(T_e)}{F} e^{q_s}$$

Calibration free analysis & Matlab procedure: compute T_e

To apply the CF procedure it is necessary to consider the atomic and ionic emission lines of each element under analysis, complete of their spectroscopic parameters and the partition function of the emitting species at the plasma temperature; this was done for W I, W II, Be I, Be II, H(D,T), the data being retrieved from the NIST website (<u>https://www.nist.gov/pml/atomic-spectra-database</u>). Below (left) an example of the data for W I and (right) the partition functions of W I and H at typical temperatures of the LIBS plasmas.

Observed Wavelength Air (nm)	<i>A_{ki}</i> (10 ⁸ s ^{−1})	Acc.	<i>E</i> , (eV)	<i>E_k</i> (eV)	gi - g _k		W.txt		:	× +					W_I_UT.txt			H_I_UT.txt	
														File	Modifica	Visualizza	File	Modifica	Visualizza
400.1380	5.6e-03	в	1.507891	4.605562	9 - 9	File	Modifica	Visualizz	а										
400.87506	1.63e-01	В	0.365913	3.457880	7 = 9	1001	380	4 6056	9	1 5079	9	0 0056		6962	.715003702	21.92	6962	.715003702	2
401.9227	6.7e-03	в	0.412313 •	3.496218	5 - 3	1001	751	3 4570	0	0 3650	7	0.0000		7542	.941254010	24.46	7542	.941254010	2
402.8786	2.48e-02	В	1.181329	4.257920	1 - 3	4000		2 4062	2	0.3039	, F	0.1050		8123	.167504319	29.44	8123	.167504319	2
403.5356	2.90e-02	В	1.916797 •	4.988377	7 - 9	4019	.227	3.4902	2	0.4125	2	0.0007		8703	.393754627	33.91	8703	.393754627	2
						4028	./86	4.2579	3	1.1813	1	0.0248		9283	.620004936	38.9	9283	.620004936	2
403.6855	1.49e-01	В	2.387469	5.457908	9 - 7	4035	.356	4.9884	9	1.9168	/	0.0290		9863	.846255244	44.43	9863	.846255244	2.01
404.3894	1.42e-01	c	2.387137	5.452232	5 - 5	4036	.855	5.4579	7	2.3875	9	0.1490		1044	4.07250555	50.51	1044	4.07250555	2.01
404.5594	2.88e-02	В	0.365913	3.429715	7 - 5	4043	.894	5.4522	5	2.3871	5	0.1420		1102	4.298/5586	57.17	1102	4.298/5586	2.03
404.7938	5.0e-04	c	0.207090	3.269126	3 - 5	4045	.594	3.4297	5	0.3659	7	0.0288		1210	4.52500017	04.4 72.21	1210	4.52500017	2.00
405.3932	4.9e-02	В	1.856810	4.914315	5 - 3	4047	.938	3.2691	5	0.2071	3	0.0005		1216	4.75125047	80 61	1210	4.75125047	2.11
						4053	.932	4.9143	3	1.8568	5	0.0490		1334	5.20375709	89.58	1334	5.20375709	2.33
405.525	1.798-03		1.655011	4.711538	7-9	4055	.230	4.7115	9	1.6550	7	0.0018		1392	5.43000740	99.12	1392	5.43000740	2.54
406.0705	5.90-02	в	2.458319	5.510/28		4060	.705	5.5107	7	2.4583	7	0.0590		1450	5.65625771	109.22	1450	5.65625771	2.85
406.4791	1.598-01	В	2.387469	5.436811	9-7	4064	.791	5.4368	7	2.3875	9	0.1590		1508	5.88250802	119.86	1508	5.88250802	3.3
406.9950	3.600-02	в	0.598844	3.644317	/- 5	4069	.950	3,6443	5	0.5988	7	0.0360		1566	6.10875832	131.03	1566	6.10875832	3.91
407.0608	5.7e-03	В	0.207090	3.252077	3-5	4070	.608	3.2521	5	0.2071	3	0.0057		1624	6.33500863	142.7	1624	6.33500863	4.73
407.1928	3.29e-02	в	1.916797 -	4,960794	7 - 5	4071	.928	4.9608	5	1,9168	7	0.0329		1682	6.56125894	154.85	1682	6.56125894	5.81
407,4358	1.0e-01	в	0.365913	3,408091	7-7	1071	358	3 /081	7	0 3659	7	0 1000		1740	6.78750925	167.47	1740	6.78750925	7.21
408.8330	4.13e-03	6	0.412313	3.444095	5 - 3	1000	330	3 1111	2	0.1123	5	0.1000		1/98	7.013/5956	180.53	1/98	7.013/5956	8.97
410.2702	4.98-92	8	0.771099	3.792268	9 = 7	4000		2 7022	5	0.4125	0	0.0041		1014	7.24000987	194	1014	7.4600987	11.1/
410 2042	4 20-04		0 508844	3 610823	7 - 5	4102	. 702	5.7925	7	0.7711	9	0.0490		1914	7 60251048	207.00	1914	7 692510/8	17.05
410.2042				5.025025	, ,	4102	.942	3.0198	5	0.5988	/	0.0004		1972	T (1/)	11/-	1572	- (1/)	····
	NI	ST	⁻ da	ta		WV	′ (Å)	E _k (eV)) g _k	E _i (eV)	$\mathbf{g}_{\mathbf{i}}$	A _{ki} (10 ⁸	s⁻¹)		I (K)	U(1)	I	(K)	U(1)

the operating scheme of the procedure is illustrated below:

Read Aryelle txt file (one by one)

Rescale the experimental emission intensities taking into account the response of the whole spectroscopic system

Consider the three W I emission lines 426.94 nm, 429.46 nm, and 430.21 nm and compute $\rm n_{\rm e}$

Make the extended Boltzmann Plot (BP) for W I and W II and compute $T_{e.}$

Make the BP for W + (H+D+T) and, from the intercepts, compute the [H+D+T]/[W] concentration ratio

Include other elements: Be as dust in the divertor region and as bulk material in the first wall...

Two preliminary steps have been applied to the raw data to make them suitable for CF:

- 1. Rescaling the intensity of the emission lines through the spectra of the D lamp and the Integrating sphere (intensity calibration)
- 2. Subtraction of the background signal induced by the spectrometer orders (background subtraction)

The intensity calibration was obtained by comparing the reference spectral signal of the stabilized deuterium UV light source and the 5W integrating sphere with that obtained by the Aryelle spectrometer.

After the comparison, a calibration file, containing multiplication factors as a function of the wavelength was obtained for the region from 260 to 370 to rescale the experimental intensitiy with that theoretical of the deuterium lamp and from 370 to 740 nm to rescale the experimental intensity with that theoretical of the 5W integrating sphere.

The background subtraction was obtained by applying an iterative smoothing procedure with a moving average filter (3 close points) to the original data in order to suppress the peaks and obtain a smoothed background to subtract to the original data. The net result is a full range spectrum without any additional background signal from the sequence of the spectrometer's orders, as shown as an example in the following figure:

Calibration free analysis & Matlab procedure: compute n_e

To make the BP of each chemical species more reliable to obtain it is a common procedure to make the <u>extended BP</u>, where atoms and ions are displayed together in the same BP, once the coordinates of the ions are modified as follows:

$$E_{k-ions} = E_{k \to i} + E_{ionization}$$

$$\ln\left(\frac{I_{k\to i}}{g_{k\,A_{k\to i}}}\right)_{ions} = \ln\left(\frac{I_{k\to i}}{g_{k\,A_{k\to i}}}\right) - \ln\left[2\left(\frac{mk}{2\pi\hbar^2}\right)^{\frac{3}{2}}\frac{T^{\frac{3}{2}}}{n_e}\right]$$

therefore, the electron density, n_e is the needed parameter to include ions in the BP of the species.

Through the knowledge of n_e it is also possible to have the relative concentration of atoms and ions of the same chemical species through the **Saha-Boltzmann equation**:

$$\frac{C_{ions}}{C_{atoms}} = \frac{2U_{ions}(T_e)}{n_e U_{atoms}(T_e)} \left(\frac{mk_B T}{2\pi\hbar^2}\right) e^{-\frac{E_{ion}}{k_B T}}$$
(*E_{ion} = ionization energy, m = electron mass*)

necessary to correctly quantify the concentrations of the chemical species

Spectrochimica Acta Part B 62 (2007) 378-385

Multi-element Saha-Boltzmann and Boltzmann plots in laser-induced plasmas

J.A Aguilera *, C. Aragón

Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain

Received 20 November 2006; accepted 20 March 2007 Available online 27 March 2007

$$\ln\left(\frac{\varepsilon^{z}\lambda}{\mathrm{Ag}_{j}}\right)^{*} = \ln\left(\frac{\varepsilon^{z}\lambda}{\mathrm{Ag}_{j}}\right) - B^{z}(T, N_{\mathrm{e}})$$
(2)

where

$$B^{z}(T, N_{\rm e}) = z \ln \left[2 \left(\frac{mk}{2\pi\hbar^2} \right)^{3/2} \frac{T^{3/2}}{N_{\rm e}} \right]$$
(3)

and

$$E_{j}^{z^{*}} = E_{j}^{z} + \sum_{k=0}^{z-1} (E_{\infty}^{k} - \Delta E_{\infty}^{k})$$
*Spectrochim. Acta B 62 (2007) 378–385

| JET LIBS data analysis meeting #1 | 06-02-2025, Julich | Salvatore Almaviva | Page 18

ACTA PART B

SPECTROCHIMICA

Calibration free analysis & Matlab procedure: compute n_e

The electron density was computed according to the following formula:

$$n_e = \frac{\Delta \lambda_{FWHM}}{w_{FWHM}^0} (10^{23} m^{-3})$$

where $\Delta \lambda_{FWHM}$ is the experimental line broadening (reduced by the instrumental broadening which was estimated through the emission lines of the low pressure Hg lamp)

and w_{FWHM}^0 is the Stark parameter of the three W I lines at 426.9, 429.4, 430.2 nm from the Nishijima and Doerner publication (J. Phys. D: Appl. Phys. 48 (2015) 325201 (6pp)):

able 1. Summa	ary of W	I Stark	FWHM.
---------------	----------	---------	-------

λ (nm)	$T_{\rm e}({\rm eV})$	$n_{\rm e} (10^{23} {\rm m}^{-3})$	w _{FWHM} (nm)	$w_{\rm FWHM}^0$ at $10^{23} { m m}^{-3}$ (nm)
426.9	0.73-0.99	0.12-0.41	0.00940-0.0248	0.0634 ± 0.0022
429.4 430.2	0.73–1.0 0.83–0.99	0.12-0.41 0.19-0.41	0.00727-0.0226 0.00537-0.0157	0.0513 ± 0.0022 0.0330 ± 0.0026

IOP Publishing

J. Phys. D: Appl. Phys. 48 (2015) 325201 (6pp)

Journal of Physics D: Applied Physics doi:10.1088/0022-3727/48/32/325201

Stark width measurements and Boltzmann plots of W I in nanosecond laser-induced plasmas

D Nishijima and R P Doerner

Center for Energy Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417, USA

E-mail: dnishijima@eng.ucsd.edu

Received 18 March 2015, revised 8 June 2015 Accepted for publication 22 June 2015 Published 10 July 2015

Abstract

We report the first measurements of Stark broadening widths of W I lines (426.9 nm, 429.4 nm, and 430.2 nm) as a function of electron density, n_e . The electron density is obtained from Stark broadening of a C II line at 426.7 nm in nanosecond laser-induced tungsten carbide plasmas. A linear relation between the W I Stark widths and n_e is confirmed. The electron temperature, T_e , is evaluated from Boltzmann plots of W I transitions with an oscillator strength $f_{ik} < 1.0 \times 10^{-2}$, since systematically lower population densities are observed for W I transitions with $f_{ik} < 1.0 \times 10^{-2}$, indicating that absorption occurs. This is consistent with an overestimated n_e derived from Stark broadening of the 429.4 nm line ($f_{ik} = 2.45 \times 10^{-2}$) at a high ambient gas pressure.

Keywords: W I Stark width, W I Boltzmann plot, laser-induced plasma

(Some figures may appear in colour only in the online journal)

Calibration free analysis & Matlab procedure: compute T_e

Searching in the database accessible by the procedure, the experimental spectrum is compared with the theoretical one and if the spectral distance between experimental and theoretical lines is below a certain threshold (typically 50 pm) the lines are identifed. Using these lines the extended BP for W (and, in the next steps, for Be) can be setup.

Calibration free analysis & Matlab procedure: evaluate [T+D+H]/[W]

Once the Extended BP for W is setup, the sum of the spectral signal of the Balmer alpha emission T_{α} , D_{α} , H_{α} is included in the BP because the Aryelle spectrometer cannot spectrally resolve the three emission lines but consider the T+D+H signal as a single spectral emission. By applying CF the relative concentration [T+D+H]/[W] is obtained and rescaled in percentage.

Line	wv(nm)	E _i (eV)	E _k (eV)	g _k A _{ki} (s ⁻¹)
T_{α}	656.047	10.2	12.09	3.88
D_{α}	656.107	10.2	12.09	3.88
H_{α}	656.285	10.2	12.09	3.88

* Data taken from NIST

Calibration free analysis & Matlab procedure : Expected Results and information

With these procedures the following information on the PFCs of the divertor can be obtained:

- 1) Atomic concentration (%) of T+D+H with respect to W (bulk material)
- 2) (ongoing) Atomic concentration (%) of T+D+H with respect to Be (redeposited material)
- 3) In-depth atomic concentration (%) of T+D+H with respect to W (bulk material) and Be (ongoing)
- 4) Electron temperature and electron density of the LIBS plasma
- 5) Estimated processing time (currently): ≈ 15 sec per spectrum

Conclusions

- 1) The automatic procedure we are going to implement allows to process large amounts of spectral data in relatively short times
- 2) The development of such routines has focused on obtaining two main information:
 - 1) The qualitative in-depth distribution (as a function of the applied laser shots) of the main chemical elements of interest, with particular attention to T+D(+H), H being present as a residue of environmental contamination
 - 2) The concentration of T+D(+H) with respect to tungsten, considered as bulk material of the divertor PFCs
- 3) The further development of the scripts is planned to include in the processing also Be, as bulk material of the first wall and obtain data for the concentration of T+D(+H), in PFCs of the first wall.