

The JT-60SA tokamak

Advanced Superconducting Tokamak

Advanced Superconducting Tokamak

BA-Satellite Tokamak Program

- Designed and built jointly by Japan and EU at the Naka site under the Broader Approach agreement
- Fully **superconducting**, high **current**, highly **shaped**
- High input power flexibility
- Jointly exploited by Japan and EU

B _t	2.25 T
I _p	5.5 MA
R / a (A = 2.5)	2.96 / 1.18 m
κ/δ	1.93 / 0.5
t (flat-top)	100 s
N-NBI (500 keV)	10 MW
P-NBI (85 keV)	24 MW
ECRH (82, 110, 138 GHz)	7 MW

JT-60SA: A scientific challenge

- JT-60SA aims at DEMO and ITER normalized plasma parameters
 - High: beta, non-inductive current fraction, normalized density, confinement

JT-60SA: A scientific challenge

- JT-60SA aims at DEMO and ITER normalized plasma parameters
 - High: beta, non-inductive current fraction, normalized density, confinement
- While working at high absolute plasma parameters:
 - Ip~1.5xJET
 - Peak Thermal Energy ~2xJET
 - Peak Neutron rate ~1.5xJET
 - Sustained period ~20xJET

Fast ions studies

N-NBI 500keV

- Fast ions can interact with Alfvén waves

 fast ion transport and losses
- Fast ion physics studies possible with N-NBI at 500keV and P-NBI 85keV

Fast ions studies

ASCOT/MISHKA/CASTOR-K

[R. Coelho Front. Phys 23]

- Fast ions can interact with Alfvén waves

 fast ion transport and losses
- Fast ion physics studies possible with N-NBI at 500keV and P-NBI 85keV
- N-NBI fast ions can destabilize Alfvén Waves in the plasma core
- Essential information for tokamak reactor with DT reactions

Fast ions studies

- Interaction between MHD and fast ions can produce electromagnetic perturbations at high beta
- Significant fast ion transport → Optimization is required

Turbulent transport studies

- Interaction between MHD and fast ions can produce electromagnetic perturbations at high beta
- Significant fast ion transport → Optimization is required

Turbulent transport studies

- Gyrokinetic simulations performed to study the impact of beta
- Sharp increase of turbulent heat transport at high beta when considering $\delta B_{\scriptscriptstyle \parallel}$

Integrated modelling

[Garcia NF14] [Hayashi NF17] [Garzotti NF18]

- Integrated modelling performed in the past with several integrated modelling suites and transport models for the scenarios expected in JT-60SA
- Validation of models done with JET and JT-60U data
- High β_N~4 steady-state is possible in ITB configuration with full N-NBI
- Validity of these extrapolations?

JT-60SA timeline

- Experiments start in late 2026 (reduced scope)
- Integrated modelling with reduced models is being carried out now for scenarios expected in OP2 and OP3 (BGB, CDBM, TGLF, Qualikiz) with HFPS,ETS, TOPICS, GOTRESS [Gabriellini NF submitted, Aiba IAEA 2025]
- First principle modelling being done for the impact of fat ions on turbulence with CGYRO,GENE
- Impact of W also being explored

Conclusions

- JT-60SA aims at high beta plasmas in the presence of high energy fast ions and likely ITB
- Fast ions and turbulence/transport analyses being done with first principle codes (using previous work from JET for validation): local GK codes (GENE, CGYRO), MEGA
- Reduced models used for transport do not capture well the physics expected in JT-60SA scenarios
- Large uncertainty on scenario expected in JT-60SA (similar for ITER, BEST etc)
- Further development of reduced models for turbulence/transport in conditions expected in JT-60SA is needed
- WPTE has included target physics for JT-60SA in European machine → Validation of reduced models being developed? (in addition to JET DT)
- JT-60SA can serve as test-bed for high beta and fast ion physics with model validation from 2026→ Participation in the Experiment Team