
Introduction to the CINECA
Marconi100 HPC system

Isabella Baccarelli

i.baccarelli@cineca.it

May 29, 2020

SuperComputing Applications and Innovations (SCAI) – High Performance Computing Dept

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnections)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

CINECA Infrastructure

M100 Infrastructure: how to access
The access to M100 is granted to users with approved projects for this platform (Eurofusion, Prace,
Iscra B and C, European HPC programs,…).
Eurofusion community has 80 dedicated nodes of M100

● New Users:

● Register on the User Portal UserDB
 userdb.hpc.cineca.it
● Get associated to an active project on M100:

● Principal Investigators (PIs): automatically associated
if registered on UserDB (otherwise inform
superc@cineca.it once done)

● Collaborators: ask your PI to associate you
 to the project
● Fill the “HPC Access” section on UserDB
● Submit your request for the HPC Access (from

UserDB)
● You will receive your credentials by e-mail in the next

few working hours (Note: the way to get access to the
machine will change in the near future)

mailto:superc@cineca.it

M100 Infrastructure: how to access

Access by public keys (with the
ssh keys generated on a local and
secure environment, and protected
via passphrase) is strongly
recommended

$ ssh -X username@login.m100.cineca.it

**
* Welcome to MARCONI100 Cluster /
*
* IBM Power AC922 (Whiterspoon) -
*
* Red Hat Enterprise Linux Server release 7.6 (Maipo)
*
etc. etc.

● Short system description
● “In evidence” messages
● “Important messages” (changes of policies, maintenances, etc.)

mailto:username@login.m100.cineca.it

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

Marconi100: the Power AC922 model

• AC922 “Whiterspoon”

• 32 PFlops peak

• Nodes: 980 compute + 3 login nodes,
32 TFlops each

• Processors: 2x16 cores IBM 8335-GTG
2.6 (3.1) GHz

• Accelerators: 4xNVIDIA V100 GPUs,
Nvlink 2.0, 16GB

• RAM: 256 GB/node

• Local disk: 1.6TB NVMe

• Internal Network: Mellanox Infiniband
EDR DragonFly+

• Disk Space: 8PB storage

● 2 Power9 sockets
● Each with 16 cores @ 2.6 GHz (3.1 GHz peak)
● SMT (Hardware threads per core): 4

$ ppc64_cpu –info

Core 0: 0* 1* 2* 3*
Core 1: 4* 5* 6* 7*
 (Cores from 2 to 13)
Core 14: 56* 57* 58* 59*
Core 15: 60* 61* 62* 63*

Core 16: 64* 65* 66* 67*
Core 17: 68* 69* 70* 71*
 (Cores from 18 to 29)
Core 30: 120* 121* 122* 123*
Core 31: 124* 125* 126* 127*

CPU 0

CPU 1

Power AC922 CPUs

● Performance: ~0.8 Tflops per node

Power AC922 V100 (Volta) GPUs

● Compute acceleration units

● 4 V100 GPUs per node

● Performances per GPU:

● 7.8 TFLOPS FP64
● 15.7 TFLOPS FP32
● 125 Tensor TFLOPS

● nvidia-smi (NVIDIA System Management
Interface)

● DeviceQuery (from CUDA samples, load the
cuda module to access the command)

A digression: what is a GPU - 1

A digression: what is a GPU - 2

GPUs are specialized for parallel
intensive communication

A digression: what is a GPU - 3

Parallelism of Single
Program Multiple Data

(SPMD)

A digression: what is a GPU – 4
CPU vs GPU Architectures

A digression: what is a GPU – 5
GPU Architecture scheme

Power AC922 V100 (Volta) GPUs

● Compute acceleration units

 4 V100 GPUs per node

 For each GPU:
 80 Volta Streaming Multiprocessors (SMs)

 64 FP32 cores
 64 INT32 cores
 32 FP64 cores
 640 Tensor cores

 16 GiByte High Bandwidth Memory

● Performances per GPU:

● 7.8 TFLOPS FP64
● 15.7 TFLOPS FP32
● 125 Tensor TFLOPS

Power AC922 Memory

● 256 GB (16xDDR4 DIMM)

● 8 channels @ 17.5 GB/s

● Memory Bandwidth ~ 240 GB/s

● 16 GiByte High Memory Bandwidth
per GPU

● 4096-bit interface (8x 512-bit memory
controllers)

● Peak Memory Bandwidth ~900 GB/s

Enable threads running on CPU cores and on
GPU SMs to access ANY of the AC922 memory
Pools (NUMA domains)

UVAs and ATS features

Power AC922 Memory
NUMA nodes and UVAs

Unified Virtual Address Space (UVAs) and Address Translation Services (ATS)

Enable threads running on CPU cores and on GPU SMs to access ANY of the AC922 memory pools (NUMA
domains)

$ numactl -H
available: 6 nodes (0,8,252-255)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
...size...
node 8 cpus: 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
node 252 cpus:
node 252 size: 16128 MB
node 252 free: 16128 MB
node 253 cpus:
node 254 cpus:
node 255 cpus:

Note: a series of patches have been accepted by the Linux
Kernel community providing support for ATS and coherent
Memory access to GPU RAM pages by a host task and host
RAM pages by a GPU kernel

GPU device memory visibile as NUMA memory to the host

NVLink 2.0
● NVIDIA high-speed coherent interconnect

Technology GPU-to-GPU and GPU-to-CPU
● 3 NVLink bricks GPU-GPU and GPU-CPU

Per socket
● 150 GiByte/s peak bidirectional bandwidth

between each of the three components

 PCIe Gen 4

X bus
● Intersocket memory access
● 64 GB/s peak bidirectional bandwidth

Power AC922 Intra-node interconnect

M100 System Interconnects
DragonFly+ Mellanox Infiniband EDR

● 4 islands of 13 compute racks (up to 260 total) grouped

using 20 downlinks and 16 uplinks

● Linked together by multiple EDR links

● Fully nonblocking communication between groups

● Adaptive routing algorithms (prevent contention and

provide failover or fast re-routing in case of hardware

failures) – WORK IN PROGRESS (next M100 maint?)

Each compute node is connected to the IB fabric with a
single EDR adapter placed in the shared PCIe x16 socket.
the shared socket provides one x8 connections to each
processor Power9 socket => symmetric network connection
to all MPI ranks on both POWER9 processors.

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

M100 Module Software Environment

The base profile is the default:
● automatically loaded after login
● contains basic modules for the programming activities

Available
software modules

profiles

categories

compilers
libraries
tools
applications
…….

The available software is offered in a module environment

The modules are collected in different profiles and organized in
functional categories

Profile types:
● Programming (base, advanced): compilation, debugging,

profiling, libraries
● Domain (chem-phys, lifesc, …): production activities

programming
domain

M100 Module Software Env: base

$ module av

------------------------- /cineca/prod/opt/modulefiles/profiles --------------------------
profile/advanced profile/base profile/chem-phys profile/global profile/archive profile/candidate profile/deeplrn profile/lifesc

--------------------- /cineca/prod/opt/modulefiles/base/environment ----------------------
autoload

---------------------- /cineca/prod/opt/modulefiles/base/libraries -----------------------
blas/3.8.0--gnu--8.4.0 szip/2.1.1--gnu--8.4.0 boost/1.72.0--spectrum_mpi--10.3.1--binary zlib/1.2.11--gnu--8.4.0
elsi/2.5.0--gnu--8.4.0 essl/6.2.1--binary ………..

---------------------- /cineca/prod/opt/modulefiles/base/compilers -----------------------
cuda/10.1 gnu/8.4.0 pgi/19.10--binary python/3.7.7 python/3.8.2 spectrum_mpi/10.3.1--binary xl/16.1.1--binary

------------------------ /cineca/prod/opt/modulefiles/base/tools -------------------------
anaconda/2020.02 cmake/3.17.1 singularity/3.5.3 spack/0.14.2-prod superc/2.0

----------------------------------- /cineca/prod/opt/modulefiles/base/tools ------------------------------------
anaconda/2020.02 cmake/3.17.1 singularity/3.5.3 spack/0.14.2-prod superc/2.0

M100 Module Software Env: domains

“Domain” profiles:

-- /cineca/prod/opt/modulefiles/profiles --
profile/advanced profile/archive profile/base profile/candidate profile/chem-phys profile/deeplrn profile/global profile/lifesc

To access a “domain” application, e.g. in the chemical physics scientific domain, you need to
load the profile/chem-phys first:

$ module load profile/chem-phys

The domain profiles are all “additive”: you can load them together, adding them to the base profile

The profile
chem-phys is
added to the
base profile

M100 Module Software Env: domains

$ module av
-- /cineca/prod/opt/modulefiles/profiles --
profile/advanced profile/archive profile/base profile/candidate profile/chem-phys profile/deeplrn profile/global profile/lifesc

-- /cineca/prod/opt/modulefiles/base/environment---
autoload
--- /cineca/prod/opt/modulefiles/base/libraries ---
……..
--- /cineca/prod/opt/modulefiles/base/compilers -------------------------------
……..
--- /cineca/prod/opt/modulefiles/base/tools --------------------------
……..
-- /cineca/prod/opt/modulefiles/chem-phys/libraries ---
blas/3.8.0--pgi--19.10--binary libxc/4.3.4--gnu--8.4.0 scalapack/2.1.0--pgi--19.10--binary
elpa/2020.05.001--pgi--19.10--binary netcdf/4.4.1--spectrum_mpi--10.3.1--binary xmlf90/1.5.4--gnu--8.4.0
elpa/2020.05.001--spectrum_mpi--10.3.1--binary netcdff/4.4.4--spectrum_mpi--10.3.1--binary
elsi/2.5.0--gnu--8.4.0 openblas/0.3.9--gnu--8.4.0

--- /cineca/prod/opt/modulefiles/chem-phys/applications ---
amber/18 cp2k/7.1 cpmd/4.3 gromacs/2020.2 lammps/3mar2020 namd/2.13 plumed/2.7.0 qe-gpu/6.5 siesta/4.1-b4 vasp/5.4.4
vasp/6.1.0 yambo/4.5

M100 Module Software Env:
autoload, modmap

Needing, e.g., lammps?

$ module load profile/chem-phys
$ module load autoload lammps/3mar2020
$ module list
Currently Loaded Modulefiles:
 1) profile/base 4) spectrum_mpi/10.3.1--binary 7) cuda/10.1 10) plumed/2.7.0
 2) profile/chem-phys 5) gnu/8.4.0 8) lapack/3.9.0--gnu--8.4.0 11) openblas/0.3.9--gnu--8.4.0
 3) autoload 6) blas/3.8.0--gnu--8.4.0 9) fftw/3.3.8--gnu--8.4.0 12) lammps/3mar2020

The autoload
module takes
care to load
all the lammps
dependencies

$ modmap -m lammps
Profile: advanced
Profile: archive
Profile: base
Profile: chem-phys

lammps
 3mar2020

Profile: deeplrn
Profile: lifesc

A better, easier way to know
if an application is available
on M100?

The modmap command!

modmap detects all the available
profiles, categories, and modules
=> “map” of the available modules

modmap -h # command help

M100 Module Software Env:
spack

$ module load spack/0.14.2-prod

● setup-env.sh file is sourced, $SPACK_ROOT is initialized to /cineca/prod/opt/tools/spack/<vers>/none,
spack command is added to your PATH, and some nice command line integration tools too.

● A folder is created into your default $WORK space ($USER/spack-<vers>) with the subfolders created
and used by spack during the phase of a package installation:

 sources cache: $WORK/$USER/spack-<vers>/cache
 software installation root: $WORK/$USER/spack-<vers>/install
 module files location: $WORK/$USER/spack-<vers>/modulefiles

● You can define different paths for cache, installation and modules directories (please refer to the
spack guide to find out how to customize these paths)

● Some softwares installed with spack are already available as modules or as spack packages:

$ module load spack/0.14.2-prod or $ module load spack/0.14.2-prod
$ module av $ spack find
$ module av <module _name> $ spack find <package_name>

Can’t you find the
software you need?
Use the “spack”
environment

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

M100 Programming Environment
Available compilers in BASE profile:

IBM XL C/C++ and Fortran 16.1.1
gnu 8.4.0
PGI 19.10
Cuda 10.1

IBM XL: enable OpenMP parallelization
by the -qsmp option (-qsmp=omp)

Note: newer versions are/will be
available in profile/candidate

Available MPI environment in BASE profile:

IBM Spectrum MPI 10.3.1

● Based on Open MPI version 4.0.1, full MPI 3.2 standard
● FCA (hcoll) support (Mellanox Fabric Collective

Accelerator on InfiniBand interconnect)
● Relies on hwloc to navigate the server hardware topology
● GPU support

● NVIDIA GPUDirect RDMA
● CUDA-aware MPI

Use mpirun (not srun) to execute your MPI program

By default, GPU support is disabled. Run the “mpirun -gpu”
command to enable it.

Use the --report-bindings option for an abbreviated image of
the server’s hardware and the binding of processes

hwloc provides details about NUMA
memory nodes, sockets, shared caches,
cores and SMT, etc.

Note: a gnu compiled Open MPI 4.0.3
installation will be made available in
profile/advanced (work in progress)

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

M100 Production Environment

M100 is a general purpose
system used by hundreds
of users.

Login nodes

A responsible use of the login nodes is crucial to ensure the
effective use of the infrastructure and the access to the computing
resources.

● Protect your credentials and access from “safe” posts; opt for
ssh keys with passphrase

● Interactive runs on login nodes are strongly discouraged and
should be limited to short test runs
● per user limits on cpu-time (10 minutes) and memory (1 GB)
● avoid running large parallel applications on the front-ends.

● Some apps and tools, in the absence of an explicit setting
of the TMPDIR variable, use the /tmp area (10 GB) and can
saturate it => critical!
Check the apps and tools you use and set the TMPDIR variable
to your $CINECA_SCRATCH

Compute nodes

● Production jobs must be submitted to
M100 queueing system: batch jobs

● SLURM scheduler and resource manager

● Node sharing (but the allocated resources
– cores, gpus, memory – are assigned in
an exclusive way)

M100 Production Environment
SLURM specs and Accounting

Each node “exposes” itself as having

● 128 (virtual) cpus [32 physical cores with 4 HTs

each]

● 4 GPUs

● 246000 MB of memory

It is possible to ask up to
● 128 ntasks-per-node (1 cpus-per-task)
● 1 ntask-per-node (128 cpus-per-task)
● or any combination of ntasks-per-node * cpus-per-task ≤ 128

BUT:

SLURM has been configured so to assign a physical core with its 4 Hts

Asking for --ntasks-per-node=1 and --cpus-per-task=1 corresponds to ask for --cpus-per-task=4

The accounting considers:

● the requested number of physical cpus
● the requested number of GPUs
● the amount of memory

and calculates the number of equivalent
cores taking the maximum among

N physical cpus
N GPUs * 8
Memory / Memory-per-core

M100 Production Environment
EuroFusion resources

80 dedicated nodes

production partition: m100_fua_prod (68 nodes)

● max 16 nodes per job
● max walltime: 24 h

debug QOS: m100_qos_fuadbg (12 nodes)

● max 2 nodes, 256 logical cpus, 8 gpus per job
● max time: 2 h

lowprio production: qos_lowprio

● Non-expired projects with exhausted budget
are automatically associated the qos_lowprio

● For active projects: you can ask to be associated
to the FUAC4_LOWPRIO Account (write to
superc@cineca.it)

Special production: qos_special

● For jobs needing more than 16 nodes or 24 h walltime
● Ask superc@cineca.it; your request will be evaluated

by the EF Operation Committee

Serial partition: m100_all_serial (2 nodes of the
login group, open to the external network)
● max 1 physical core
● max walltime: 4 h
● open and free for all M100 users

mailto:superc@cineca.it

M100 Production Environment
Interactive batch jobs

● In case you need to “interact” with your running job (tuning of input parameters, debugging etc.)

● and it needs more than 10 minutes, or many processes (not suitable on the login nodes)

● “Interactive” SLURM batch job

 Ask for the needed resources (cores,
gpus, memory, time) with srun
or salloc.

 The job is queued and scheduled as
any other job but, when, executed,
the standard input, output, and error
streams are connected to the terminal
session from which srun or salloc
were launched.

 You can then run your application from
that terminal

Non MPI programs (single process or multi-threaded
programs using one or more GPUs)

$ srun <options> --pty bash

The session starts on the compute node (look at the
prompt)

MPI programs using one or more GPUs

$ salloc <options>

A new session is started on the login node

M100 Production Environment
Interactive batch jobs: non MPI examples

[username@login03 ~]$ srun -N 1 --ntasks-per-node=1 --cpus-per-task=4 --gres=gpu:1 --time=01:00:00 -p <partition_name>
-A <account_name> --pty bash
[username@r240n17 ~]$ nvidia-smi
=> only one GPU is detected
[username@r240n17 ~]$ numactl -s show NUMA policy settings of the current process
policy: default
preferred node: current
physcpubind: 0 1 2 3
cpubind: 0
nodebind: 0
Membind: 0 8 252 253 254 255 all six NUMA nodes CPUs: 0, 8 GPUs: 252-255
[username@r240n17 ~]$ module load cuda/10.1
[username@r240n17 ~]$ matrixMul one of the CUDA samples (not meant for performance measurements!)
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla V100-SXM2-16GB" with compute capability 7.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 2719.55 GFlop/s, Time= 0.048 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

M100 Production Environment
Interactive batch jobs: non MPI examples

[username@login03 ~]$ srun -N 1 --ntasks-per-node=1 --cpus-per-task=4--gres=gpu:1 --time=01:00:00 --mem-bind=local
-p <partition_name> -A <account_name> --pty bash
[username@r240n17 ~]$ nvidia-smi
=> only one GPU is detected
[username@r240n17 ~]$ numactl -s
policy: default
preferred node: current
physcpubind: 0 1 2 3
cpubind: 0
nodebind: 0
membind: 0 the task is bound only to the local NUMA node 0
[username@r240n17 ~]$ module load cuda/10.1
[username@r240n17 ~]$ matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla V100-SXM2-16GB" with compute capability 7.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 2719.55 GFlop/s, Time= 0.048 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

M100 Production Environment
Interactive batch jobs: non MPI examples

[username@login03 ~]$ srun -N 1 --ntasks-per-node=1 --cpus-per-task=128 –gres=gpu:4 --time=01:00:00 --mem-bind=local
-p <partition_name> -A <account_name> --pty bash
[username@r240n17 ~]$ nvidia-smi
=> four GPUs are detected
[username@r240n17 ~]$ numactl -s
policy: default
preferred node: 0
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
cpubind: 0 8
nodebind: 0 8
membind: 0 8
[username@r240n17 ~]$ module load cuda/10.1
[username@r240n17 ~]$ simpleMultiGPU
Starting simpleMultiGPU
CUDA-capable device count: 4 Comparing GPU and Host CPU results...
Generating input data… GPU sum: 16777304.000000
 CPU sum: 16777294.395033
Computing with 4 GPUs… Relative difference: 5.724980E-07
 GPU Processing time: 8.011000 (ms)

Computing with Host CPU...

M100 Production Environment
Interactive batch jobs: MPI examples

The same principles apply for the request of resources and memory binding, but you need to “salloc” your
request (the GPUs are non-overallocatable resources, and would get stuck with the bash process of
srun <options> --pty bash. Each subsequent step corresponding to the mpirun invocation will hang forever)

Hybrid application MPI/OpenMP, 1 node, 4 GPUs, 4 processes (one per GPU) and 8 threads per task => one thread per physical core

[username@login03 ~]$ salloc -N 1 --ntasks-per-node=4 --cpus-per-task=32 --gres=gpu:4 --time=01:00:00 --mem-bind=local
-p <partition_name> -A <account_name>
[username@login03 ~]$ export OMP_NUM_THREADS=8
[username@login03 ~]$ mpirun -n 4 --map-by socket:PE=8 --rank-by core <exe>

If you don’t want to exploit the Power9 SMT feature (128 “slots”):

● ntasks * OMP_NUM_THREADS ≤ 32
● choose --cpus-per-task=OMP_NUM_THREADS*4
● define a proper map for the task binding (and ranking)

It’s easy to forget that you are “inside” a job, and
launching a second salloc in the job sessions
can lead to a very confusing and not properly
working environment.

REMEMBER to close the session (exit or Ctrl-D)
at the end of your activity.

M100 Production Environment
Process binding and task affinity in jobs

Hybrid application MPI/OpenMP, 1 node, 4 GPUs, 4 processes (one per GPU) and 8 threads per task => one thread per physical core

[username@login03 ~]$ salloc -N 1 --ntasks-per-node=4 --cpus-per-task=32 --gres=gpu:4 --time=01:00:00 --mem-bind=local
-p <partition_name> -A <account_name>
[username@login03 ~]$ export OMP_NUM_THREADS=8
[username@login03 ~]$ mpirun -n 4 --map-by socket:PE=8 --rank-by core <exe>

Thread binding:

Note: for XL compilers by default
OMP_PROC_BIND=true

The execution environment doesn’t move OpenMP
threads between OpenMP places, thread affinity is
enabled, and the initial thread is bound to the first
place in the OpenMP place list

Process binding:

OpenMPI option --map-by <object>:PE=n

● Objects: slot, hwthread, core, L1cache, L2cache, L3cache,
socket, numa, etc. (see “man mpirun”). Default: socket

● PE=n : bind n “processing elements” (constituting the object)
to each task.

In one M100 socket there are 16 physical cpus (16 PEs)
2 tasks per socket => 8 phys cpus per task

Node => socket => physcpu => hwthread

M100 Production Environment
Process binding and task affinity in jobs

More on process binding:

● Explicit binding (handy if you have few processes on
a single node)

--cpu-set=phys_cpu_id1, phys_cpu_id2,….

● --bind-to option
--bind-to <socket,core,hwthread,etc.>
--bind-to core : 32 MPI processes, 1 to 4 OMP threads

More on thread binding:

Other possible values for OMP_PROC_BIND

OMP_PROC_BIND=master,close,spread

OMP_PLACES=threads,cores,sockets

Explicit placement:

OMP_PLACES={log_cpu_id1},{log_cpu_id2}

Do you have unusual configuration in terms of tasks/threads?

● Experiment with the HybridHello_smpi code (module load superc)
● Ask superc@cineca.it

M100 Production Environment
Non interactive batch jobs

#!/bin/bash
#SBATCH --nodes=16 # Number of nodes
#SBATCH --ntasks-per-node=4 # Number of MPI ranks per node
#SBATCH --ntasks-per-socket=2 # Number of MPI ranks per socket
#SBATCH --cpus-per-task=32 # number of HW threads per task
#SBATCH --gres=gpu:4 # Number of requested gpus per node, can vary between 1 and 4
#SBATCH --mem=230000MB # Memory per node
#SBATCH --time 01:00:00 # Walltime, format: HH:MM:SS
#SBATCH --mem-bind=local
#SBATCH -A <your account_no>
#SBATCH -p m100_usr_prod

module load profile/chem-phys
module load autoload yambo/4.5

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpirun --map-by socket:PE=8 --rank-by core -np ${SLURM_NTASKS} yambo -F yambo.in -J yambo.out

As usual on HPC systems,
the large production runs
are executed in batch mode.
The user writes a list of
the needed #SBATCH
directives (resources,
walltime, mail, jobname,
etc. etc.) followed by the
needed loading of modules,
setting of variables,
and launch of the
Executable.

The same principles apply
concerning memory
binding, process and
thread affinity, as
previously discussed

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

General considerations and tips
on the use of M100

Let’s sum up:

● The recommended programming stacks are at present provided by XL/pgi/gnu with IBM Spectrum MPI

● To enable the GPU Support (CUDA-aware MPI and GPUDirect RDMA) use the mpirun -gpu command

● Rely on the already available software, optimized for M100 architecture, on the modmap tool to

map the module environment, and on spack for freely installing the software you need

● The UVAs and ATS provide much help in code development and performance improvement, but bind

the task to the local NUMA node with the --mem-bind=local to optimize the host memory access and

spare GPU Numa nodes for kernels

● Take care of the binding and affinity of processes and tasks in order to avoid oversubscription (strong

impact on performance)

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

Final remarks

● Marconi100 is still a very “young” platform, but it already showed impressive capabilities

● Further assessment, configuration tuning, optimization of the interconnect network

are required

● Further study and analyses on our side are requested as well to fully exploit M100

● More softwares will become available

● More documentation will become available

Thank you (HLST and all EF users) for your feedback and work on
Marconi100, and for your contribution to the pre-production phase!

Outline

● CINECA infrastructure and Marconi100

● System architecture (CPUs, GPUs, Memory, Interconnects)

● Software environment

● Programming environment

● Production environment (SLURM)

● Considerations and tips on the use of Marconi100

● Final remarks

● Questions and Answers

Questions and Answers

From Simppa Äkäslompolo

1.The diagram of the nodes looks like there is no direct (DMA) like access b/w main memory and the GPU.
No common bus. Thus, does all data transfer really need to go through the CPU?

On each socket the two GPUs are directly connected the one to the other, and both to the socket CPU, via
NVLinks (150 GB bidirectional bandwidth peak). Intersocket communications relies on the Xbus, but in any
case no copy from the GPU memory to the CPU memory is needed. Each process on the GPUs and the
CPUs can access the total memory space (UVA and TSM, see slides n. 17/18; the proper drivers are
needed to allow host mpi CUDA awareness and GPUDirect RDMA)

2. Is there a fusion Domain as a Module Software Environment?

Not yet. If Eurofusion users consider it useful to have a “fusion” domain profile it can be easily added,
please write to superc@cineca.it for the request (and the list of softwares that you consider proper for the
profile)

mailto:superc@cineca.it

Questions and Answers

From Francesco Iannone:

1. Why isn't the PGI/OPENMPI installed ?

The OpenMPI software shipped by PGI is not built by us, and it has not been configured to fully integrate
itself with slurm and the mellanox acceleration libraries (it is instead CUDA-aware). This can cause (and it
did) node failures triggering a kernel panic and simulating a hardware problem. We are investigating with
the IBM support regarding the logged hardware problems caused by the PGI-OpenMPI orted process, but
we however opted for preventing its use until a proper configuration/compilation will be carried out, and to
recommend the use of Spectrum MPI libraries (with the proper PGI wrappers).

Questions and Answers
From Serhiy Mochalskyy

1.With default MPI pinning (scatter) using 4 mpi tasks and 4 GPUs:

task0-socket0; task1-socket1; task2-socket0; task3-socket1.

I had a problem that task1 assigned to socket1 gets GPU which is connected to socket0 as numbering of
GPUs. are GPU0-1 - socket0, GPU2-3 - socket1. The same with task 2 that is by default is assigned to
socket0 gets GPU2 from socket1. Is there are any reason to make this scatter pinning as default?

Usually the set of GPU devices is done in the code with cudaSetDevice (what code are you using?). You
can remap the GPUs ID by redefining CUDA_VISIBLE_DEVICES according to the scatter pinning, and
then set the device with the ID equal to the MPI process rank. As an alternative, you can override the
default OpenMPI behaviour in the process pinning (round-robin w.r.t. sockets; it does not depend by our
choice) by adding the –rank-by core option of mpirun.

Please contact us at superc@cineca.it to tell us what code you are using, and we can run some tests to
ensure that desired behaviour is followed.

mailto:superc@cineca.it

Questions and Answers

From Tiago Ribeiro:

1. is Likwid available on M100? I guess this could help on process pinning

Likwid is not available on M100 (it implies some security issues which are under consideration on Marconi)

Questions and Answers
From Thomas Hayward-Schneider:

1.regarding the network topology. I found poor performance on MPI jobs running on more than 1 island. a) Is
this expected? b) Is this expected to improve after the "adaptive routing" maintenance?

All Eurofusion nodes belong to a single island. The application of slurm topology feature in the choice of
the assigned nodes, and the adaptive routing algorithm – both changes were applied at the last
maintenance of June 11 – showed a significant improvement in the MPI performances.

2.What is the recommended (host) BLAS/LAPACK library when using PGI compilers (I think ESSL is only for
XL compilers?)?

OpenBLAS libraries (available in the base profiles) are recommended in the place of blas/lapack libraries,
and in some cases (e.g., quantum-espresso on GPU) they show a better performance even respect to the
ESSL. You can however use the ESSL as well with the PGI compilers, but they require runtime XL libraries
(hence, you need to load the xl module, and the pgi after that, or to properly set your LD_LIBRARY_PATH
adding the path of XL libs).

Questions and Answers

From Thomas Hayward-Schneider:

3. Is it possible to oversubscribe the batch nodes? It can be useful for job-monitoring. In other words, is there
a way to do: srun -n 1 --jobid=12345 --pty bash to get an interactive shell on the node where another
allocation is running.

Yes, it is possible (did you have issues in doing it?). An alternative way is relying on the pam adopt slurm
module, which allows users to ssh to the nodes assigned to the job, with all the processes launched in this
session being adopted in the step.extern step

4.When will the new nvidia HPC SDK be available on m100?

We are installing the tool with a try license and the process for acquiring the permanent license is ongoing.
We’ll inform all users via newsletter, but approximately it should be online in the next few days

Questions and Answers
From Thomas Hayward-Schneider:

5.Are there special settings required for ROMIO etc for IO with Spectrum MPI on m100 ?

For parallel I/O, IBM Spectrum MPI supports ROMIO version 3.2.1 and OMPIO, as an unsupported technical preview. To
understand how either ROMIO or OMPIO was built, use the ompi_info command, with the highest level of verbosity. To
request OMPIO, users must specify -mca io romio321. OMPIO include improved nonblocking MPI-IO implementations.

For improved MPI-IO performance using ROMIO on Spectrum Scale parallel filesystem on POWER9 architecture, users
should specify the following hints by creating a my_romio321_hints.txt file with the following content:

romio_cb_write enable

romio_ds_write enable

cb_buffer_size 16777216

**cb_nodes **<#nodes>

After creating the my_romio321_hints.txt file, users may pass the hints file path to SMPI by using the ROMIO_HINTS
environment variable. For example:

ROMIO_HINTS=/path/to/my_romio321_hints.txt

Please refer to the official Spectrum MPI guide the the IBM Knowledge Center for additional hints or limitations.

	Slide 1
	CINECA Infrastructure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Marconi 100
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

