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A hierarchy of neutral models
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Computational efficiency

Model accuracy

micro-Macro

(mMH)

Advanced fluid 
neutral models (AFN) Kinetic modelHybrid fluid-kinetic models

Spatially (SpH)
• Efficient (direct) 

coupling to plasma 

equations, no MC 

noise

• Basis for hybrid 

methods

• Good accuracy in 

highly collisional 

regimes • F-K transition 

based on location

• User-defined 

transition criteria

• Decomposition in 

velocity space

• Can be made fully 

equivalent to 

kinetic model

• Most complete 

physical description

• Flexibility w.r.t. 

geometry, collisional 

processes, sources, 

boundary 

conditions,…

• Very expensive in 

highly collisional 

regimes

CPU  1/10?



Summary achievements AFN: mature models!
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• Significant model improvements compared to ‘standard’ fluid neutral models

o Transport coefficients consistent with collisional processes used by EIRENE (AMJUEL/HYDHEL)

[N. Horsten et al., NF, 2017], including neutral-neutral collision effects [W. Dekeyser et al, PSI, 2024.]

o Boundary conditions consistent with kinetic EIRENE treatment [N. Horsten et al., NF 57, 2017], incl. fast/thermal reflection 

(approximate effect of molecules) and TRIM data (effect of wall materials)

o Separate neutral energy equation to extend validity range of fluid (and SpH) model towards lower recycling conditions 
[W. Van Uytven et al., CPP 60, 2020]

o Inclusion of plasma drift effects [W. Van Uytven et al. NME 2022]

• Made widely available to users through implementation in new extended grids version of SOLPS-ITER

o Correct treatment of grid non-orthogonality [W. Dekeyser et al, NME 18, 2019]

o Simulations up-to-the-wall [W. Dekeyser et al, NME 27, 2021]

• Already successfully applied to various machines, incl. AUG, JET [N. Horsten et al., NME 2022], ITER [W. Van Uytven et al, NF 

62, 2022] and DEMO (link WP-DES) [W. Van Uytven et al, CPP, 2024]

• Support provided for implementation of AFN models in European turbulence codes (TOKAM3X, GRILLIX – 

link TSVV3).



Achievements spatially hybrid modeling (SpH)
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• Combine AFN model in high-collisional regions with kinetic treatment in low collisional regions
[W. Van Uytven, CPP, 2022]

o Improved accuracy compared to pure fluid

o Improved speed compared to kinetic (factor 5-20 depending on regime)

• Accurate treatment of molecular and (kinetic) impurity effects

• Fully integrated in extended grids version of SOLPS-ITER for simulations up-to-the-wall



Status of two-phases hybrid method and boundary conditions
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• Overview of practical boundary condition implementation strategies for fluid neutral models

o Matching moments and fluxes (Marshak, most used in practise)

o Adjoint source iteration method (Golse, Klar)

o Moment model approach (Kainz, Titulaer, Borsche, Klar)

• Comparison of the different strategies is WIP

• Two-phases hybrid method with particle tracing phase and fluid phase

• For a given error tolerance, the most cost-effective two-phases hybrid method is a domain 

decomposition (spatial hybrid) method

• Implementation of an adaptive spatial hybrid method with error-based interface position is WIP



Status of hybrid method based on KDMC
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• Aim: investigate alternative, fully particle-based, hybrid method

• Basic particle tracing scheme implemented in EIRON

• Eiron updated to use BGK operator

o KDMC depends on certain assumptions of the physics to work

o EIRON used simple rotation after collision, which violated those assumptions

o Initial results look ok, but more tests needed

• Estimation of QoIs through fluid model based on particle positions

o Error analysis of 1D homogeneous background is now more rigorous.
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Introducing neutral-neutral collisions
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Nonlinear kinetic equation:

𝜕𝑡𝑓 𝑥, 𝑣, 𝑡 + 𝑣𝜕𝑥𝑓 𝑥, 𝑣, 𝑡 = 𝑅𝑐𝑥 𝑥 𝑀𝑐𝑥 𝑣 𝑥 ∫ 𝑓 𝑥, 𝑣′, 𝑡 𝑑𝑣′ − 𝑓 𝑥, 𝑣, 𝑡

+𝑅𝑛𝑛 𝑥 𝑀𝑛𝑛 𝑣 𝑥 ∫ 𝑓 𝑥, 𝑣′, 𝑡 𝑑𝑣′ − 𝑓 𝑥, 𝑣, 𝑡
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→ 𝑀𝑛𝑛 𝑣 𝑥  depends on the neutral particle distribution itself!

Make a fluid model in a systematic way?

→ Explicit in time: 𝑀𝑛𝑛 𝑣 𝑥  is known from previous time step

→ Hilbert expansion



Hilbert expansion
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Hilbert expansion ansatz1:

Introducing a scaling parameter 𝜀 ≪ 1

𝑓 𝑥, 𝑣, 𝑡 ≈ 𝑓0 𝑥, 𝑣, 𝑡 + 𝜀𝑓1 𝑥, 𝑣, 𝑡 + 𝜀2𝑓2 𝑥, 𝑣, 𝑡 +  …

→ The particle distribution is an equilibrium 𝑓0 plus higher order perturbations

Rank terms by importance by scaling them with 𝜀𝑘 ≪ 1
(larger 𝑘 → less important term) and equate per order in 𝜀

1 H. Grad 1958



Results
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Hydrodynamic scaling:

Diffusive scaling:

[E. Andoni, MSc thesis, KU Leuven]



AFN model including n-n collisions in SOLPS-ITER
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• ‘Standard’ AFN model assumes dominant CX 

collisions for transport of atoms, but:

o n-n collisions may be as frequent as CX in 

case 𝑛𝑖 ≈ 𝑛𝑛

o No plasma below dome, far-SOL,…

• Add n-n collision contribution to diffusion 

coefficient (and viscosity/conductivity)

(rate based on Kotov 2007 (thesis))

𝐷0
𝑛 =

𝑇𝑛

𝑚𝑛(𝜈𝑖𝑜𝑛 + 𝜈𝐶𝑋 + 𝜈𝑛−𝑛)

• Split into (perpendicular) pressure diffusion 

and (isotropic) density diffusion based on 

relative collision frequencies

𝐷𝑝
𝑛 =

(𝜈𝑖𝑜𝑛+𝜈𝐶𝑋)𝐷0
𝑛

𝜈𝑖𝑜𝑛+𝜈𝐶𝑋+𝜈𝑛−𝑛
, 𝐷𝑛

𝑛 =
𝜈𝑛−𝑛𝐷0

𝑛

𝜈𝑖𝑜𝑛+𝜈𝐶𝑋+𝜈𝑛−𝑛



AFN boundary conditions including n-n collisions
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Diffusion approx.:

• Original BCs: 

consider neutrals from 

CX-collisions only

• Modified: neutrals 

from both CX and n-n 

collisions

Maxwellian approx.:

• Assume (drifting) 

Maxwellian based on 

Tn and u||n

Incident neutrals: diffusion approx. 

or Maxwellian approx.
Incident ions: truncated Maxwellian 

+ sheath acceleration

Speed- and angular-dependent 
particle flux density 

Reflected/recycled neutrals

TRIM database

Moments total distribution: particle, momentum and 

energy flux densities [N. Horsten et al., NF 57 (2017)]



AUG 16151
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• A standard SOLPS-ITER equilibrium/geometry, 

but full W wall

• Grid created with carreMode=3 and GOAT

• BCs:

o Core: Ti=Te=300eV, ni=2.8e19 m-3

o Walls: sheath BCs

o Recycling 1.0; no puff/pump

• Setup:

o D only, no drifts, but with parallel currents

o AFN model, incl. n-n collisions, with and w/o 

separate neutral energy equation

o Ref.: full kinetic neutrals (atoms, molecules, n-n 

collisions)



Target profiles
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Neutral density
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ITER
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• Case based on ITER 2275, but full W wall

• Grid created with carreMode=3 and GOAT

• BCs:

o Core: Ti=Te=300eV, ni=2.8e19 m-3

o Walls: sheath BCs

o Recycling 1.0; puff 1e22 s-1;pump beneath dome

• Setup:

o D only, no drifts, no parallel currents

o AFN model, incl. n-n collisions, with and w/o separate 

neutral energy equation

o Ref.: full kinetic neutrals (atoms, molecules, n-n 

collisions)



Target profiles

13/12/2024 18



Neutral density
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• Goal: acceptable numerical errors for DEMO SOLPS cases (e.g. < 10%) as cheaply as possible

• Start from error analysis framework of PhD K. Ghoos

• But, some unanswered questions:

o Q1: effect of Δ𝑡 on bias? ([M. Baeten et al., CtPP, 2018]: statistical error ~ Δ𝑡 (0D+1D cases))

o Q2: effect of n-n collisions (NNC) on error scaling?

o Q3: effect of impurities?

20

Towards accurate and efficient DEMO simulations in SOLPS

𝝐𝐧𝐮𝐦 = 𝝐𝐝 + 𝝐𝐜 + 𝝐𝐛 + 𝝐𝐬

statistical error

finite sampling bias error

convergence error

discretization error

direct result of noisy MC sources

non-zero residuals

finite grid resolution

deterministic error due to noise + non-linearities

13/12/2024



21

Case set-ups
D-only D + He + Ar

𝑇i = 𝑇e = 1000 eV

𝑛𝐷 = 5 ⋅ 1019 m−3 Γ𝐷2
= 1 ⋅ 1023 s−1

Γ𝐷2
= 1 ⋅ 1023 s−1

𝚪𝑨𝒓 = 𝟏 ⋅ 𝟏𝟎𝟏𝟗 𝐬−𝟏

ሶ𝑄𝑖 =  ሶ𝑄𝑒 = 75 MW

Γ𝐷 = 7.5 ⋅ 1021 s−1

Γ𝐻𝑒 = 7.1 ⋅ 1020 s−1

𝚪𝑨𝒓 = 𝟏 ⋅ 𝟏𝟎𝟐𝟎 𝐬−𝟏

Transport barrier
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D-only results (with NNCs)

Only 1e-4s and 1e-5s for P/100 

lead to a qualitatively wrong 

solution

13/12/2024
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D-only results

→ no noticeable effect of NNCs on convergence behavior

→ bias decreases monotinically with Δ𝑡

13/12/2024



• Multi-species cases appear to have much larger bias than D-only case

• Why?

o Purely case dependent? E.g. much higher core power? higher T’s OT?

o Bad statistics from impurity neutrals themselves?

o Combination of both?

24

Prelim. conclusions D + He + Ar cases
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• Error reduction w.r.t. 𝑃 and Δ𝑡 does not change significantly with NNCs

• Decrease of bias for smaller Δ𝑡 demonstrated in SOLPS-ITER

o useful knowledge if Δ𝑡 is limited by plasma side (e.g. drifts)

• Bias error seems to be much higher for (high-power?) multi-species cases

o Similar observations in literature

o Need to better understand why

o Optimal strategies for D-only may no longer be optimal

25

Conclusions error analysis

→ high priority for future research

→ back to 1D or slab cases? DEMO cases much too slow for efficient research

13/12/2024
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FHK modeling based on AFN
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• AFN models and hybrid methods (in particular, SpH) reached high level of maturity

o Including effects of drifts, molecules, n-n collisions,…

o Coupling with impurity models

• Integration in various codes

o Default models in SOLPS-ITER extended grids version. Relevant input files automatically generated.

o Basic AFN models implemented in various European turbulence codes (link TSVV3), incl. SOLEDGE3X, 

GRILLIX

• Already applied to simulate multiple machines, incl. TCV, AUG, JET, ITER, DEMO (link WP TE, 

WP DES)

• Next steps

o Validation n-n collision effects with kinetic simulations

o Extension to ‘hydrodynamic’ closure model for void regions w/o plasma

o Fluid model for molecules?



FHK modeling based on KDMC
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• Basic particle tracing scheme implemented in EIRON

• Eiron updated to use BKG operator

o KDMC depends on certain assumptions of the physics to work

o EIRON used simple rotation after collision, which violated those assumptions

o Initial results look ok, but more tests needed

• Estimation of QoIs through fluid model based on particle positions

o Error analysis of 1D homogeneous background is now more rigorous.

• Next steps

o Extension to heterogeneous background

o Validation source estimators

o Integration with multi-level scheme



AD, UQ
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• Derivatives based on AD (TAPENADE) in forward mode available

o EIRENE standalone

• UQ demonstration: applied to study sensitivity of QoIs to uncertainty in reaction rate coefficients

o Accurate in low/medium recycling regimes

o Problem of diverging derivatives in high recycling regimes

• Next steps

o Analysis of derivative problems in high recycling

o Analysis of impact estimators on accuracy of derivatives

o Implementation adjoint AD with TAPENADE

o Adjoint differentiation of couple B2.5-EIRENE solver

• Potential for building implicit coupling to plasma codes (B2.5, SOLEDGE3X) and providing 

sensitivities (ERO2.0)
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