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Three main elements: Confinement, density limit, L-H power

> Besides several operational aspects which can affect the accessibility of target plasma conditions (relevant
ELM-free regime, sawtooth avoidance / control, ... ) three fundamental aspects determine a reactor design
in combination with the exhaust capabilities

» Confinement level and parameters which determine it (IP, BT, R, a/R, 95, ...)

» Maximum density of operation, that is, density limit

> Power requirements for the sustainment of good and stable H-mode confinement ( L-H power threshold )

> 0n each of these three elements, critical uncertainties still remain, even from the standpoint of a
completely empirical approach

» In addition, reliable physics models, which could replace empirical approaches, are still under
development
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H-mode Confinement: current, magnetic field and plasma size

» Confinement time increases with increasing current and increasing plasma size
» Confinement time does not change strongly with increasing magnetic field

» Confinement time decreases with increasing heating power, how much does it increase with increasing
density ?

> 0n each of these statements we have (large) uncertainties on the precise dependencies, with a significant
impact on the projections for the reactor operational point

> On several of these dependencies we have not yet reached a consolidated theoretical understanding, nor a
robust predictive capability

» One question was recently raised in connection with the new DEMO design ( 4.4T, 18.8 MA, 8.6/ 3.0 [m] )
» How does confinement change when BT, IP, k and a/R are changed at fixed q95 ?

» Do we understand dependencies of H-mode confinement in IP, BT, a/R, k and size and can we rely on the
projections from scaling laws ?

» Scaling laws tell us that IP matters, not BT, can we rely on this for the new DEMO point ?
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H-mode Confinement: AUG specific scaling laws [Ryter NF 2021]

Label C; r_'k';p g (g p, k5 (8 3 ) RMSE
1C 0.300 1.455 —0.660 0.185
W 0.242 1.420 —0.611 0.138
2C 0.406 1.560 —0.360 —0.667 0.178
2W 0.323 1.412 —0.344 —0.609 0.132
3C 0.436 1.589 —0.384 —0.030 —0.663 0.178
3C+W 0.482 1.597 —0.467 —0.066 —0.660 0.166
ITPAIL no 4 n/a 1.311 —0.178 0.157 —0.634

4C 0.630 1.570 —0.157 —0.740 0.300 0.142
4C+W 0.590 1.600 —0.360 —0.734 0.201 0.155
5C 0.803 1.660 —0.223 —0.096 —0.730 0.310 0.140
SC+W 0.870 1.725 —0.435 —0.153 —0.716 0.231 0.151

S5C+W-Bt 0.699 1.687 —0.223 —0.116 —0.729 0.237 0.154
6C 0.369 1.692 —0.241 —0.122 —0.723 1.714 0.141

oC+W 0.471 1.736 —0.416 —0.168 —0.718 1.361 0.150
ITPA20-IL n/a 1.291 —0.134 0.147 —0.644 0.560
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H-mode Confinement: JET specific scaling laws [Maslov NF 2020}
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Table 4. Exponents for the OLS power law regression fit for the 73 4, parameters as defined in (4). M. was not included in JET-C2 regression due to the lack of experiments with isotopes.
IPB98(y,2) scaling is shown for comparison.

Const I B, qos P ne Megr R’ RRMSE, %
IPB98(y.2) 0.0562 0.93 0.15 —0.69 0.41 0.19 — —
JET-CI 0.073 = 0.002 1.04 = 0.026 0.11 &= 0.027 —0.76 = 0.011 0.31 £0.015 0.20 = 0.026 0.887 11.5
JET-C1 0.0635 + 0.0025 1.15 + 0.018 0.12 = 0.028 —0.76 = 0.011 0.32 +£0.015 0.20 £ 0.026 0.887 11.5
JET-C2 0.0897 =+ 0.002 1.175 £ 0.017 —0.09 £0.02 —0.63 = 0.01 0.13 £ 0.01 0.894 10.2
JET-C2 0.095 £ 0.003 1.104 £+ 0.016 —0.051 = 0.02 —0.64 £+ 0.01 0.13 £ 0.01 0.894 10.2
JET-ILW 0.059 £ 0.0022 1.16 = 0.047 —0.22 £0.034 —0.585 £+ 0.014 0.08 &+ 0.025 0.37 £0.023 0.851 10.2
JET-ILW 0.066 £+ 0.004 0.947 = 0.034 —0.13 = 0.036 —0.59 £ 0.014 0.11 4+ 0.025 0.35 £0.023 0.846 10.4
Table 5. Regression results with triangularity and particle source instead of the plasma density.
Const I, B, qos P 1+6 1 + S/ngw Mg R? RRMSE, %
JET-C1 0.068 £+ 0.002 1.36 &= 0.027 0.033 +0.028 — —0.74 £ 0.012 1.18 = 0.065 —0.155 £ 0.031 0.33 +£0.03 0.877 12.6
JET-C1 0.068 £ 0.003 1.38 +0.02 — —0.01 =0.03 —0.74 £ 0.012 1.19 £ 0.065 —0.156 £+ 0.031 0.34 +£0.027 0877 12.6
JET-C2 0.088 = 0.002 1.37 = 0.014 —0.11 =0.02 — —0.66 £ 0.008  0.67 =0.042 —0.302 £ 0.024 — 0.904 9.9
JET-C2 0.098 + 0.003 1.27 +0.014 — —0.09 £0.02 —0.66 £ 0.008  0.66 = 0.042 —0.31 = 0.024 — 0.903 9.9
JET-ILW  0.066 + 0.002 1.31 £ 0.029 —0.28 = 0.03 — —0.598 £ 0.012 0.254+0.08 —0.33 £ 0.03 0.415 £ 0.02 0.871 0.56
JET-ILW  0.0836 £ 0.004 1.06 4+ 0.023 — —0.23 £0.032 —0.60 £ 0.013 0.30 £ 0.08 —0.33 £ 0.03 0.41 £0.02 0.866 0.76
Table 9. Results of the OLS regression analysis for 77 ;, made on the reduced JET-ILW dataset with 238 samples containing . sor. data.
Const trp B, Py 1+46 1 + Singw 1+ r"c_.SOL-!nGW Mg R? RRMSE, %
0.0657 £ 0.004 1.41 4 0.068 —0.357 £ 0.06 —0.60 £+ 0.026 0.23 £ 0.154 —0.25 £ 0.054 0.39 £ 0.034 0.851 10
0.070 & 0.004 1.38 4 0.065 —0.301 + 0.059 —0.62 £+ 0.025 0.22 +0.148 —0.23 £ 0.036 0.43 +0.034 0.862 9.7




H-mode Confinement: multi-device scaling laws

RMSE ITER
Scaling C(107?%) I B n P R &% aR M N (%) e (s)

IPBO8(vy) 3.65 097 008 041 063 193 067 023 020 1398 15.8 6.0
IPB98(y.1) 5.03 091 0.15 044 —-0.65 205 0.72 057 0.13 1398 15.3 5.9
IPB98(y,2) 5.62 093 015 041 -0.69 197 078 0.58 0.19 1310 14.5 4.9
IPB98(y,3) 5.64 0.88 007 040 -0.69 215 078 0.64 020 1273 14.2 5.0
IPB98(y.4) 2.87 0.85 029 039 —-07 208 0% 069 0.17 714 14.1 5.1

[ IPB NF 1999 &

ITPA20
~ — (0053 +0.030 0982019 go22:0.1 Verdoolaege NF 2021 ]
BR AT 0,018

~ F0.059\ 1291016 p—0.1320.17
—0.24+0.11 p—0.669+0.059 pl1.71+0.32 T = | 0.067 f B
XN PLth Rge::u E.th ( —0.032
% {l 1 5){}.36:|:ﬂ.39 HIE.S'D:I:U.BSED.?rﬁ:I:D.ﬁﬁ MOfEDiU"I?. > ﬁ.[l 147+0.097 PI_tE 64440.061 Rée};:}iﬂ 27
« (1 1 8)0562036 Dﬁ?:l:[llf:}MOfm:tﬂlﬁ (5)

This relation will be referred to as I'TPA20-IL (ITER-like)
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Ags ~ 3.0 Qg5 ~ 3.5 Ags ~ 4.0 Qg5 ~ 4.5 Qg5 ~ 5.0
1.2f ' ' ' ] 1.2F ' ' F 1.2F ' ' ] 1.2F ' ' ' ™ 1.2f ' ' '
+ 4

® Poy=5MW % Po=5MW M & Ploy=5MW & Poy=5MW & Po=5MW
& P10 MW & P =10MW $ * & P =10MW & Pl =10 MW & P =10MW
i & Pos15MW 1 &  PLu=15MW o & Pl s15MW 1 & P =15MW 1 &  PLu=15MW

From ITPA
Conf DB,

* IP and BT
dependencies
on windows
of constant

q95




From ITPA Conf DB, IP and BT dependencies at windows of q95 ("

> All data of the ITPA 20 selection, with spherical tokamaks removed

» OLS on windows of q95 provide results which are surprisingly consistent with complete global scaling laws

q95

IP

BT

PLTH

NEL

RGEO

RMSE

3.0:

3.5:

4.0:

4.5:

5.0:

0.0707 (0.0106 /-0.0092)
0.0943 (0.0110/ -0.0098)
0.2384 (0.0360/-0.0313)
0.2088 (0.0450/-0.0370)

0.2764 (0.0953/-0.0709)

1.3236 10.0494

1.2889 +0.0295

1.4478 £0.0435

1.3131 £0.0595

1.4499 $£0.0735

-0.0330 % 0.0441

-0.1118 £ 0.0455

-0.2224 +0.0739

-0.1957 £ 0.0993

-0.0121 £ 0.1228

-0.7939 % 0.0357

-0.8168 * 0.0282

-0.7221 £ 0.0368

-0.6585 £ 0.0480

-0.7763 £ 0.0628

0.3811 £ 0.0437

0.3267 % 0.0441

0.0408 + 0.0474

0.0171 £ 0.0776

-0.0863 £ 0.1212

1.5895 + 0.1152

1.6182 +0.0908

0.8922 + 0.1094

1.0566 £ 0.1454

0.9457 £ 0.2397

0.1485

0.1591

0.1636

0.2307

0.1830

» These regressions have been only performed in order to explore dominant exponents

> They should NOT be used for predictive purposes
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IMEP Ip virtual scan finds strong increase of confinement

also concomitant with predicted density increase

1.4

» H-mode, numerical Ip scan, all other IMEP input 08 W o1
parameters fixed (fixed gas puff, not fixed density) 06 th
» Strong Ip dependence, temperature and density increase = ®
s 0.4
: : Win1pgog € I "7 ngp 041 =
» Stronger than in scaling laws o g 629 ® .
Winitpazo—1n & I, 77 ngp 018 . With IMEP, |
Luda PPCF 2021 |
Te [keV] - Ti[keV] ne [101%/m?] 0'00.4 0.6 0.8 1.0 1.2
d — booma | ° 0.63 @
5 — Ip=1.2MA \ 5.0 1 nel cx Ip
5 _ o
’ ; =45
3 4 E I,, exponent correction
| 2] & 4.0 for Wy, due to
? n.; increase 1.6 (IPB98)
. 3 i and 1.8 (ITPA20-IL)
2 | 4
o — oL . — 04 06 0.8 1.0 1.2
0.0 0.2 0.4 - 0.6 0.8 1.0 0.0 0.2 0.4 - 0.6 0.8 1.0 0.0 0.2 0.4 o 0.6 0.8 1.0 |p [MA]
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Comparison IMEP vs EPED on current dependence of ped top

» IMEP predicts strong increase of ped top pressure with increasing IP (MISHKA + transport from R*<VTe>/Te )

> IPED scaling (EPED KBM constraint with HELENA/MISHKA) ) [Puchmayr Master Thesis, IPP Report 2020-11 ]

fBPP — 0.686 - HU.EJU gl.ﬁﬂ aﬂ.ﬁl 55.33 ﬁﬂ.ﬂﬁ ml.ﬂﬂ

€ p
A = wpre - B o= 0.5 Fpea = 20T sl
T pre pol,ped ) w — - pol,ped — (Bp01)2 ’ pol/ = L(ﬂ)

> Introducing a core pressure peaking factor p, = p.,; / p,., and making explicit the dependence on IP and
other engineering parameters, one finds

Ppeq € Br'2.4 1705 w,,,"1.93 RM.6 (/R)"3.0 p, 0.5 [(1+k"2)"2.4 xk"0.75] (1+8)2.5

> Differences in the main assumptions of the transport constraint [KBM (EPED) and ETG-like (IMEP)] modify
the scaling of the pedestal width with increasing current and the resulting pedestal top pressure

» These elements can be specifically tested against available data and new dedicated experiments, as well as
with appropriate modelling, also computing the appropriate value of w,,,.,
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Density limit: is the Greenwald scaling law for density limit
appropriate to be used to determine the reactor operational point ?

> Increasing evidence that the Greenwald scaling law is incomplete, mainly because it does not include the

dependence of density limit on the heat flux at the edge
Greenwald

[ Giacomin PRL 2022 ]

» Giacomin (theoretical) scaling [PRL 2022] practically implies that density limit can increase arbitrarily if
power can also arbitrarily increase

— The maximum density is determined by the maximum power than can be exhausted

» This is connected with the power required to keep the H-mode = Potential enormous impact on the reactor
operational point

> Introducing Martin scaling for P, in Ps,; = Ny, o (Ip /@) ng20.37 (R/a)*0.5 (1+k*2)A-(1/3) A*0.17
> Dependencies on P;,; and B critical to validate the Giacomin model
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Impact of density limit, Greenwald vs Giacomin with IPB98
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Impact of density limit, Greenwald vs Giacomin with ITPA20-IL o7
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Impact of density limit, Greenwald vs Giacomin with ITPA20
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The operational space in size and density opens from 1D to 2D ("

> Greenwald:
» Once BT, a/R, q95 and Paux are defined, for a given R there is a given Pfus at the maximum allowed density
> This is the situation with the Greenwald limit, at which the reactor point is constrained to be located

» The additional limiting condition is that F,,,, + Py;png - Prag > Fy X PLy , which must be compatible with
the exhaust capabilities

» Giacomin :

> If in contrast the density limit significantly increases with increasing power Pg,;, size and density
practically become two independent variables

> The operational space where a reactor point can be chosen moves from a curve to a 2D domain
» The requirement that density is at the limit does not apply any longer (because there is no upper limit)

» Then the starting condition directly becomes the maximum power which can be practically exhausted,
which is directly connected with the L-H power threshold which has to be exceeded

> This provides the only constraint for the domain over which the operational point can be chosen
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The only constraint is the max power which can be exhausted

> At a density of 2.5 10220 mA-3, ITER could
produce about 2 GW of fusion power
(IPB98(y,2), with a requirement in P, of
157 MW (from Martin’s scaling)

» This operational point does not exist
according to ITPA20 (even less to ITPA20-
IL), because Pr,,. is foo low to allow
Pheat > Pry

» This density would be more than two
times above the Greenwald limit, but at
least three times below the Giacomin
limit (with a Pg,; at the LH power
threshold)

» The LH power threshold plays a critical
role, because it determines the heat flux
that has to be exhausted
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Entering and staying into H-mode

* Need to know the value and margins of P, , for DEMO-LAR to:
1) access from the low-density L-mode after ramp-up (~ 1.3e19=0.2n, or 2.5e19=04n_ ):n_.in DEMO ~ 2.1e19 @ 18.7 MA

(ITER is @ 3.8e19 for BS)
2) stay in H-mode at flattop density ( ~ 6.3e19): n .. / (000 N) ~ 2 - 3 (ITER similar)

3) access would include seeding already from the L-mode phase to enter into detached H-mode — Z.x [ P..q effect...

- It was recently pointed out [E. Delabie, WPTE meeting 16 Dec ‘24] that using I, rather than B, in high-density branch (n > nm) —
leads to lower RMS and higher extrapolated threshold power! Using Bt/q (~ Bpol) — intermediate between Bt and Ip

— This 1s indeed the case also for the subset of AUG data

clataser pro-factor | e M i D | RMSE | [.:;_F'_H“'_'Ir"llll,_-_':__!_\_‘f." ”]Pl‘, ],',“J“,l,_-.'sll}?-'
TC-26 (Be) 0.0445 + 0.0025 | 0.569 + 0.039 - 108 +£0.08 0.961 £0.032  1.92 + 0.04 | 0.238 f;; {rgf:*‘q;] f_fi*{:{[JD_zﬂéé}
TC-26 (By.1,) 0.0590 + D.0035 | 0.382 4 0.042 | 0.235 £ 0.019 - 1.01 £ 0.03 1.01 + 0.03 1.724 0.04 | 0.201 E]luld ED 1173 21]?['*[}1] 117'2\
TC-26 [B,y) 0.164 4 0006 0.624 + 0.032 1.08 £ 0.02 | 0997 + 0.030 | 166+ 004 | 0189 ﬁrlr-lfinD:_:[lﬁm 1; 11.3[ DD=_11=J]IG ‘.

* However, it has been evidenced [F. Ryter et al., NF 2014] that, for the low-density branch and the density minimum, the I, dependence
arises due to using Py, instead of P jons

- AUG + CMOD, D [M. Schmidtmayr, NF 2018]:

— valid for the low-density branch; extend to higher density
and a current scan in AUG ?

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK
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Theoretical elements

* Recent work on NBI cases from JET [P. Vincenzi et al., PPCF 2022] shows that the Pioss;ons 1S not linear going to low densities —
impact of toroidal rotation? (Consistent with impact of rotation pointed out in Ryter NF 2014)

E,=0,T+T,0,log(n|+V By~ V,B,
* DIII-D shows similar trends w.r.t. I; and torque [L. Schmitz et al., NF 2022]

* A few questions:
- Assuming one enters H-mode at the density minimum using pure electron heating, could we then rely on the

Schmidtmayr scaling? This was done in [GS Lopez et al., NF 2024], finding that the entrance EC power is sustainable
for clean plasma, but increases with increasing contamination due to W or seeding (bringing back the issue of

detachment from start)
- Can one make the Pussion Scaling more robust by adding other machines that use pure electron heating over a

density/current scan ? (and field)
- More critical: what about the densities past the minimum ? Is the scaling just the same or does it change due to

changing transport regime or edge properties? At operational density, Q, 4., ~ Q. .q, I DEMO 1s expected

[R. Bilato et al., NF 2020]: n, incorporates the edge density profile properties. Can this

bring in additional dependencies ? Flatter L-mode edge density gradient — problems
for the power threshold? Need to investigate this via modeling and possibly

experiments

Arurb ‘E i

—3 ] Bi.S,
1 + 7

PIUNS.J'. ,.:\}J PI.—HJ = [&?
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Additional considerations

Use P __or PSep =p —-P . P__? [P.David et al, NF 2022; G: Birkenmeier et al., NF 2022] — role of edge radiation can’t be neglected

loss rad sep,i

Role of heating systems: NB vs wave, pure electron heating vs mixed (ultimately alpha)

054 7037 -1.22 5034
The prediction of n__. For example from R. Bilato et al., NF 2020: 1, — CB™I,"a A

p
- Cis a constant
- This formula can include direct ion heating — lower minimum

In [E. Solano et al., NF 2023] it is shown that T has both lower minimum and lower P,__ (or Psep) — additional negative mass
dependence ? Helium on the contrary shows highern . and P_,

L]

Right of nuin, P1x ~ n%%, but probhably n°*, obviously exponent depends on proximity to minimum, plus there could be additional density
dependency due to e.g. collisionality or beta...

L]

U. Plank et al,, PPCF 2023: E__, ~ const organizes different plasma compositions as well for AUG data

]

Needs more data on the dependence of edge profiles at LH transition to put into context of which drives and stabilizing effects are at
play — comparison with modeling
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AUG database, D only, Bt~2.4 T

* Reactor away from the minimum (but how to predict it robustly?) — more points to be added in future experiments

s o i
. POINT IS 27 ¢ iaumayr 10T DEMO-LAR (0p), B, and Surface parameters
all all
[] | / 1 "’-1 | | ]
| - 0.6 MA]--" | | -
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Y= ! /17 + 1 MA L=~ 1’_"_,
5 ! "/ - 1.2 MA ! E T
.520-04' I L A I 1 9‘0.04‘ 1
§ S ITER | a a--
- [ R 0 :
002, _...-- ey an T & 0.02 :
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] P i i i [] [}
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IP dependence inside the AUG data, D only
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- Using Piss — clear trend with Ip also for the high density branch (red), and the sub-section of pure electron heating

(eh)
- Using Psep = Pioss — Prag, the eh data do not show an Ip dependence after all, but need more data (plan to do 0.8-1.2 MA at

6.5e19 in AUG
— Need more dedicated experiments to clarify this and look into the details of edge behavior as well
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Outlook for DEMO

Enter into H-mode: extrapolation of the power threshold from the low density branch in pure electron heated cases could be
assessed on present data (caveat NBI driven transitions due to effect of rotation — what about Er ?) — Focus on minimum
power (and isotope) dependencies? What about edge density gradient effect?

H-mode @ operational density: expect Q; ~ P_ /2 — how does the required power threshold scale at higher densities from
present experiments? Just continues linear (for Q, ) without additional dependencies? P, does show an Ip dependence —

artifact of heating method and analysis + proximity to minimum ?
— needs more experiments to provide data at n/n_, — 3 at different currents (and fields)

— need to look at P as well

From the modeling point of view: aside of the edge density gradient and the impact of the plasma current, what is the impact
of lower aspect ratio on threshold physics? (more trapped particles — less drive for modes driven by parallel dynamics ?)

Impact of edge density gradient along power trajectory — can we reach critical Er if density gradient in the L-mode plasma is
weak? Use pellet to trigger H-mode?

Experiments looking at the development of the P(LH but also HL) for n/nm > 2 at different currents are needed
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