

1

CEMHTI and its contribution to HeRHEA

Z Hu, A Mounir, J Joseph, F Foucher, T Sauvage, O Wendling, P Desgardin, MF Barthe, CEMHTI, CNRS

EUROFUSION ENR-MAT.02.VTT-T001 01/01/2024 → 31/12/2025

- Experiments from 12/2024-03/2025
 - ³He-exposed single-crystal tungsten (W), and thin-layer HEAs
 - 1) Pre-exposure test
 - 2) ³He exposure in single-crystal W and HEAs
 - 3) Calibration of ³He fluence in progress
- Conclusion
- Perspectives

> Detection of ³He by the $\frac{^{2}H(^{3}He, ^{4}He)^{1}H}{^{1}H}$ reaction : emitted *protons* with *high* energy of 13.3 MeV

Detection of Carbon by 2H (12C, 13C)1H reaction: emitted protons with low energy of 2.9 MeV

Detection of W : backscattered deuterons

lon density tester

2 polycrystalline W samples of $7 \times 7 \text{ mm}^2$

Energy: 300 eV Fluence :

> 6.8× 10^{16 3}He.cm⁻² (*roughly estimated*)

Current density of 8 sections

 The lower half of the circle has an almost homogeneous current density

Cember ³He exposure to thin-layer HEA, W and thick mono W

Thin-layer samples prepared by Z. Chen Exposition time :16/12/ 2024 Energy: 300 eV Fluence : $~7 \times 10^{16}$ ³He.cm⁻² (*roughly estimated*)

Cembit NRA of ³He-exposed single-crystal tungsten

(100) W Single-crystal (W-M-P-01, 7*7 mm²), Polished and annealed at 1700°C/3 h/vacuum (with a mask (7*7 mm²))

Cembtr NRA of ³He-exposed single-crystal HEA

HEAs thin layers/ MgO substrate: A1(W34.6-Nb32.5-V33), A2(W68.8-V31.2), A3(W57.2-V42.8), pure W₁, W₂

Cemht NRA of ³He-exposed single-crystal HEA

HEAs thin layers/ MgO substrate: A1(W34.6-Nb32.5-V33), A2(W68.8-V31.2), A3(W57.2-V42.8), pure W₁, W₂

Conclusions

- [³He] _{W1} ≈ [³He] _{Wmono}
- [³He] _{W2} < [³He] _{W1} → Why ?
- A1 is too small for a good measurement -> need to be repeated in a new larger sample
- [He] ↘ with [V] ↘, not as expected from calculation, to be confirmed ??
- 2-3 nm C and O Contamination at the surface ≠ ERDA (Z. Chen)
- ³He flux calibration in progress

Cembtr NRA of ³He-exposed single-crystal HEA

HEAs thin layers/ MgO substrate: A1(W34.6-Nb32.5-V33), A2(W68.8-V31.2), A3(W57.2-V42.8), pure W₁, W₂

Conclusions

- 2-3 nm C and O Contamination at the surface ≠ ERDA (several tens nm, Z. Chen)
- C contamination in the layers?

Data processing in progress

Main results :

- > NRA on ³He-exposed single-crystal HEA and W
 - No evident V effect was revealed, whereas the HEA (A1) containing more Nb has lower He retention
 - The thin HEA layer has about 150-200 nm, 2-3 nm C, and O contamination at the surface of thin-layer samples.
 - Channeling direction does not affect the ³He detection

Perspectives :

➢ for new 3He exposure :

- Pure W (limit the number of holes)
- WV alloys: with increasing V contents (1, 10, 30, 50 at %?: The Calculations used W(50%)V(50%).
- WNbV: repeat the exposure in a layer containing W, Nb, and V similar to A1.
- 2 new NRA campaigns are scheduled 29-30/04 and 22-23/05, the new 3He exposure should be carried out the week before