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Short review: The geometry of the island divertor[1]
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▪ 𝑚 = poloidal mode number (# of islands 

poloidally surrounding LCFS)

Θ𝑖 increasing

[1] Y. Feng et al, PPCF 64 (2022)
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Θ𝑖,𝑎𝑣𝑔 = 2𝑎
𝜄′𝑏𝑟𝑚
𝑅𝑚

❑ Indicates the following parameters are important in island

divertor transport:

▪ 𝜄’ (shear at resonant surface)

▪ 𝑏𝑟𝑚 (radial resonant field component)

▪ 𝑚 (poloidal mode number of islands)

[1] Y. Feng et al, PPCF 64 (2022)

H E L I A S  P H Y S I C S  G A P S  -  H E AT  A N D  PA RT I C L E  E X H A U S TM A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  V  R  W I NT E R S  |  2 4 . 0 6 . 2 0 2 5 2



H E L I A S  P H Y S I C S  G A P S  -  H E AT  A N D  PA RT I C L E  E X H A U S TM A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  V  R  W I NT E R S  |  2 4 . 0 6 . 2 0 2 5 3

Overview: The gaps and their priorities

Gap ID Description Relevance

(1-3)

Urgency

(1-3)

Effort Required

(1-3)

Total Score Priority

GP.SOL.0 Drift effects on heat/particle transport 3 3 3 9 High

GP.SOL.1 Scaling of anomalous transport with device

size/island geometry/plasma parameters

2.75 2.75 2 7.5 Medium 

– High

GP.SOL.2 Experimental validation of boundary

physics models

2.75 2.5 2.25 7.5 Medium 

– High 

GP.SOL.3 Core/Edge compatibility and extrapolation

to different devices

2.75 2 2.75 7.5 Medium 

– High

GP.SOL.4 Island geometry for optimal heat/particle

exhaust performance

2.75 3 1.5 7.25 Medium

GP.SOL.5 Evaluation of closed divertor on 

medium/reactor-sized devices

(concept/modelling)

3 2.5 1 6.5 Medium
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GP.SOL.0: Drift effects on heat/particle transport

❑ Very large 𝑣𝑝𝑜𝑙~1 − 10 km/s measured, while 𝑣∥~50 km/s (Θ𝑣∥~0.1 km/s)

▪ possibility of drifts dominating transport dynamics (W7-X sized device)

❑ To date, there are no self-consistent tools available to study how drifts affect heat/particle

transport

▪ Tools in late-stage development include: BOUT++, GBS, GRILLIX

S. Ballinger EPS (2023)

[2] X. Bonnin et al, J. Nuc. Mater. 290-293 (2001)

❑ 2D codes used in early 2000s indicate strong poloidal current loop in 

island on HFS, w/ poloidal flows surrounding LCFS. Difficulty in numerics[2]

Relevance: Experimental measurements indicate that drifts may be a 

dominant transport mechanism in the island SOL

Urgency: Knowledge of how drifts may alter locations of high heat/particle

fluxes onto divertor is imperative for any next step device

Effort: Numerical implementation of the potential equation in 3D is

extremely challenging. Numerics specialists must be involved.
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GP.SOL.1: Scaling of anomalous transport with device
size/island geometry/plasma parameters

❑ Anomalous transport coefficients directly impact cross field momentum/energy transport[3]

❑ impacts momentum conservation along fieldline (upstream vs downstream parameters) –

perpendicular viscous momentum loss a main player in detachment in W7-X[4]

❑ strike line width (wetted-area)

❑ radiation stability in detachment[5]

𝝌⊥ 

increases

[5]

[3] Y. Feng et al, PPCF 53 (2011)

[4] Y. Feng et al, Nucl. Fusion 51 (2021)

[5] Y. Feng et al, Nucl. Fusion 64 (2024)

Relevance: Small Θ𝑖 in stellarators → ⊥-transport important: uncertainties in 

cross field transport (ex: 𝐷⊥, 𝜒⊥ ) means significant uncertainties 

in divertor performance

Urgency: W7-AS saw increases of 𝜒⊥ with input power, indicating 

significant changes in a reactor compared to today’s exp’s

Effort: Many experimental data exist, but hasn‘t been looked at. Device 

scaling remains an outstanding issue.
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GP.SOL.2: Experimental validation of boundary physics models

❑ Simulation tools seem to capture qualitative features[6,7,8], 

however significant discrepancies remain[9,10]

▪ discrepancies include parameters that could significantly

affect heat exhaust – like radiation distribution

❑ detailed experimental comparisons shed light on where physics is

missing in codes/importance of these missing aspects

❑ disagreements between diagnostics (like target 𝑇𝑒 , 𝑛𝑒), need to

be resolved! 

0.28

0.58

0.00experiment

simulation

Relevance: We have to be able to trust our simulation capabilities to

predict behavior in future devices

Urgency: Comparisons are used to inform where resources need to be

spent on improving the modeling

Effort: Significant experimental data exists and dedicated

experiments have been performed in OP2.3. Analysis effort

needs to be taken/coverage is insufficient

[6]

[6] V. R. Winters et al, PPCF 63 (2021)

[7] Y. Feng et al, Nucl. Fusion 61 (2021)

[8] V. R. Winters et al, Nucl. Fusion 64 (2024)

[9] D. Bold et al, Nucl. Fusion 62 (2022)

[10] D. Bold et al, Nucl. Fusion 64 (2024)
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GP.SOL.3: Core/edge compatibility and extrapolation to
different devices

❑ Combining core high performance and divertor high performance has not been significantly explored in W7-X

▪ Detachment in NBI-heated high performance plasmas indicate core/edge compatibility possible, but...

▪ still needs to be proven for reactor-relevant high performance scenarios (e.g. pellet-fueling)

❑ Is this problem W7-X specific? How do we marry core/edge performance in future devices?

▪ degradation of upstream pressure at high frad
[3]
→ problem for the core?

Relevance: Optimum core and exhaust performance must be simultaneously achieved in future

devices

Urgency: Understanding base physics is a priority that must be tackled before core/edge

compatibility can be fully considered

Effort: It is not yet known level of core radiation required/minimum upstream parameters

needed for certain downstream conditions. Significant work needed for investigation

[3] Y. Feng et al, Nucl. Fusion 51 (2021)
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GP.SOL.4: Island geometry for optimal heat/particle exhaust
❑ island geometry expected to influence many aspects of divertor performance:

▪ density build-up (heat/particle exhaust)

Θ𝑖 
increase

[2]

Relevance: Island geometry is the clearest knob we have to tune the

performance of the island divertor (according to modeling)

Urgency: Island geometry must be part of the overall stellarator optimization for

future devices

Effort: So far, it is the most-studied effect and significant resources are

already allocated to understanding these phenomena

[2] Y. Feng et al, PPCF 53 (2011)
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GP.SOL.4: Island geometry for optimal heat/particle exhaust
❑ island geometry expected to influence many aspects of divertor performance:

▪ density build-up (heat/particle exhaust)

▪ impurity transport/screening (heat exhaust, He-exhaust, core performance)

[2] Y. Feng et al, PPCF 53 (2011) [11]V. R. Winters, Nucl. Fusion 64 (2024)

[11]
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GP.SOL.4: Island geometry for optimal heat/particle exhaust
❑ island geometry expected to influence many aspects of divertor performance:

▪ density build-up (heat/particle exhaust)

▪ impurity transport/screening (heat exhaust, He-exhaust, core performance)

▪ radiation stability (heat exhaust)

[2] Y. Feng et al, PPCF 53 (2011) [11]V. R. Winters, Nucl. Fusion 64 (2024)

[5]

[5] Y. Feng et al, Nucl. Fusion 64 (2024)
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GP.SOL.4: Island geometry for optimal heat/particle exhaust
❑ island geometry expected to influence many aspects of divertor performance:

▪ density build-up (heat/particle exhaust)

▪ impurity transport/screening (heat exhaust, He-exhaust, core performance)

▪ radiation stability (heat exhaust)

❑ Besides Θ𝑖, other geometrical parameters also influence processes listed above:

▪ 𝑊𝑟 - physical width of the island

▪ fraction of island field lines intercepted by targets (size of „island remnant“)

❑ More practical considerations: preferred resonance? ex: 𝜄 = 1 sensitive to error

fields, or minimization of island distortion as a function of toroidal angle?

Relevance: Island geometry is the clearest knob we have to tune the

performance of the island divertor (according to modeling)

Urgency: Island geometry must be part of the overall stellarator optimization for

future devices

Effort: So far, it is the most-studied effect and significant resources are

already allocated to understanding these phenomena

[12]

[2] Y. Feng et al, PPCF 53 (2011) [11]V. R. Winters, Nucl. Fusion 64 (2024) [5] Y. Feng et al, Nucl. Fusion 64 (2024) [12] Y. Feng et al, Nucl. Fusion 56 (2016)
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GP.SOL.5: Evaluation of closed divertor on medium/reactor
scale devices (concept/modeling)

❑ W7-X employs open divertor concept

▪ mostly unexplored: impact of closed divertor geometry on 

heat/particle exhaust in the island divertor

▪ requirement for closed divertor at reactor scale?

❑ Given exploratory nature of the topic, our assessment only

takes into account initial design and modeling

▪ full-fledged experimental design, engineering, and

implementation not considered when assigning priority

A. Kharwandikar, TG Edge, Divertor and PWI (17.07.24)

Relevance: Closed divertor may be required in future devices to improve heat/particle exhaust

Urgency: To design a next step device, it must be known how much of an effect a closed divertor has on 

performance → significant complexity involved in construction/cooling

Effort: First modeling results with existing tools can already take place, but only preliminary calculations have

been performed
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