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Motivation

Motivation: Accelerating GENE-X

Primary Goal: To accelerate simulations in the GENE-X code
by implementing more efficient time-stepping schemes.
Current Schemes and Limitations:

■ RK4:

→ A standard, fixed-step integrator.
→ Can be inefficient as it must use a timestep small

enough for the most challenging parts of the
simulation, even when the physics is less dynamic.

■ Strang Splitting:

✓ Used to handle different physics (e.g., Vlasov terms
with RK4, collisions terms with RK4 or RKC).

→ Introduces additional spitting error.
→ Can require more function evaluations than

necessary.
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Motivation

Motivation: Accelerating GENE-X

Proposed Solutions:

■ PIROCK (Partitioned Runge-Kutta-Chebyshev):

✓ A partitioned scheme that avoids splitting errors.

✓ It is designed for problems with both stiff diffusion
(collisions) and advection (Vlasov) terms.

✓ It uses a stabilized method (ROCK2) for the stiff
part, allowing for much larger timesteps in
high-collisionality scenarios.

■ RK43 (Adaptive RK4):

✓ An adaptive-step integrator.

✓ Estimates the local error at each step to
automatically adjust the timestep size ∆t.

✓ This ensures the simulation runs as fast as possible
while maintaining a desired level of accuracy,
avoiding wasted time with unnecessarily small steps.
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Runge-Kutta methods: A quick review

RK methods: General definition
Consider the ODE

dy

dt
= f(t, y), y(0) = y0.

Runge Kutta integration yn 7→ yn+1

Internal stages → ki = f(tn + ci∆t, yn +∆t

s∑
j=1

aijkj), i = 1, . . . , s,

Solution → yn+1 = yn +∆t

s∑
i=1

biki.

Butcher tableau representation

c A
bT =

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs
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Runge-Kutta methods: A quick review

Examples of RK methods
Explicit methods have lower triangular Butcher tableau:

0 0
c2 a21 0
c3 a31 a32 0
...

...
...

. . .

cs as1 . . . . . . as,s−1 0
b1 b2 . . . . . . bs

Common RK methods:

0 0
1

Explicit Euler

0 1
1

Implicit Euler

0
1 1

1
2

1
2

RK2

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

RK4
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Runge-Kutta methods: A quick review

Stability of Runge-Kutta methods

Consider the autonomous ODE

dy(t)

dt
= f(y(t)), y(0) = y0,

Stability function. A Runge-Kutta method with timestep ∆t
applied to the linear test problem

dy(t)

dt
= λy, y(0) = y0, λ ∈ C,

yields yn = R(∆tλ)ny0. The stability region is defined by:

S := {z ∈ C; |R(z)| ≤ 1}.

Example. Explicit Euler: yn+1 = yn +∆tλyn R(z) = 1 + z.
Stability condition: |1 + ∆tλ| ≤ 1 and for real eigenvalues
−2 ≤ ∆tλ ≤ 0 which leads for diffusion problems the famous
CFL condition ∆t ≤ C∆x2.
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Runge-Kutta methods: A quick review

Stability regions

Figure: Stability regions of explicit Euler, RK2, RK3, and RK4
methods.
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Runge-Kutta methods: A quick review

Explicit stabilized methods (Ideal for diffusion)

Optimal 1st order RKC method: Stability region contains

[−1.94s2, 0], stability polynomial Rs(z) =
Ts(ω0+ω1z)

Ts(ω0)
.

Figure: Stability region of 1st order RKC for s = 13

Nearly optimal 2nd order method ROCK2: Stability region
contains [−0.81s2, 0], stability polynomial Rs(z) = w2(z)Ps−1(z).

Figure: Stability region of ROCK2 for s = 13
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Runge-Kutta methods: A quick review

Recurrence relations

K0 = y0,

K1 = y0 +∆tµ1f(y0),

Ki = µi∆tf(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s

y1 = Ks,

For a given step size ∆t, the number of stages s is calculated
adaptively such that λmax∆t ≤ Cηs

2,

s ≥

√
∆tλmax

Cη
.
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Splitting VS Partitioning

Splitting methods

dy

dt
= f(y) + g(y), y(0) = y0

where f(y) and g(y) are nonlinear operators (e.g., advection,
collisions, neutrals).

Key idea: Split into subproblems with different physics,

dy

dt
= f(y)

dy

dt
= g(y),

and evolve each via a separate solver:

Φf
∆t(y), Φg

∆t(y) denote flow maps of the split subsystems.

Lie Splitting (1st order):

y(t+∆t) ≈ Φg
∆t ◦ Φ

f
∆t(y(t))

Strang Splitting (2nd order):

y(t+∆t) ≈ Φf
∆t/2 ◦ Φ

g
∆t ◦ Φ

f
∆t/2(y(t))
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Splitting VS Partitioning

Partitioned (additive) RK methods

dy

dt
= f(y) + g(y), y(0) = y0 ∈ Rd.

Partitioned RK methods

Ki = yn +∆t
s∑

j=1

aijf(Kj) + ∆t
s∑

j=1

âijg(Kj) i = 1, ..., s

yn+1 = yn +∆t
s∑

i=1

bif(Ki) + ∆t
s∑

i=1

b̂ig(Ki)

Second order conditions

s∑
i=1

bi =
s∑

i=1

b̂i = 1,
s∑

i,j=1

biaij =
s∑

i,j=1

b̂iâij =
1

2
(standard 2nd order)

s∑
i,j=1

biâij =
s∑

i,j=1

b̂iaij =
1

2
(Coupling order conditions)

Advantages:

✓ No additional error coming from splitting.

✓ Less function evaluations needed compared to Strang-splitting.

✓ Ability to use error estimators for adaptive time-stepping.
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PIROCK: An explicit stabilized partitioned scheme

PIROCK: ROCK2 and RK3 partition
[Abdulle and Vilmart 2013]

Figure: ROCK2 stability regions.

PIROCK is a partitioned RK
method with ROCK2 for
diffusion and RK3 for

advection.

Figure: RK3 stability region.
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PIROCK: An explicit stabilized partitioned scheme

PIROCK stability

Test equation: dy
dt = λy + iµy. Stability polynomial: R(p, q) where

p = ∆tλ represents a diffusion eigenvalue and q = ∆tµ an advection
eigenvalue.

Figure: PIROCK stability region for FD − FA coupling.

The stability region of PIROCK contains the intervals [−0.43s2, 0]
and [−i

√
3, i

√
3]. The number of stages must satisfy

s ≥
√

λD
max∆t

0.43
.
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PIROCK: An explicit stabilized partitioned scheme

PIROCK implementation
Consider the following ODE:

dy

dt
= FD(t, y(t))︸ ︷︷ ︸

collisions + neutrals

+ FA(t, y(t))︸ ︷︷ ︸
Vlasov (plasma in GENE-X)

, t ≥ t0 y(0) = y0,

PIROCK scheme:

K0 = yn,

K1 = yn + αµ1∆tFD (tn, yn ),

Kj = αµj∆tFD (tn + cj−1
∆t,Kj−1

) + νjKj−1
+ (1 − νj )Kj−2

, j = 2, . . . , s − 1.

Finishing procedure for diffusion:

˜Ks−1
= Ks−2

+ σs∆tFD (tn + cs−2
∆t,Ks−2

),

˜Ks =
˜Ks−1

+ σs∆tFD (tn + c̃s−1
∆t, ˜Ks−1

).

Coupling with advection:

Ks+1 = Ks−1
+ ∆t(1 − 2γ)FA (tn + cs−1

∆t,Ks−1
),

Ks+2 = Ks−1
+

∆t

3

FA (tn + cs−1
∆t,Ks−1

),

Ks+3 = Ks−1
+

2∆t

3

FA (tn + cs+2∆t,Ks+2).

Computation of yn+1 :

yn+1 =
˜Ks − σ∆t(1 −

τs

σ2
s

)
(
FD (tn + c̃s−1

∆t, ˜Ks−1
) − FD (tn + cs−2

∆t,Ks−2
)
)

+

∆t

4

FA (tn + cs−1
∆t,Ks−1

) +

3∆t

4

FA (tn + cs+3∆t,Ks+3)

+

∆t

2(1 − 2γ)

(
FD (tn + cs+1∆t,Ks+1) − FD (tn + cs−1

∆t,Ks−1
)
)
.

Cost per step: s+ 1FD (collisions + neutrals) evaluations and ONLY
3FA (Vlasov) evaluations.
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PIROCK: An explicit stabilized partitioned scheme

Test case: TCV-X21
Mesh points: 500 in R, 600 in Z, 32 in ϕ, 60 in µ, 80 in v∥.
Total ≃ 46× 109 points. Normalization time τ ≃ 20µs. LBD
collision.
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PIROCK: An explicit stabilized partitioned scheme

Preliminary test with PIROCK

Simulation of 500 timesteps with s = 5, ∆t = 4× 10−4 on 64 nodes,
2 tasks / node, 56 CPU / task.

Average time / step ≃ 112 sec.
Average time / step for Strang-splitting ≃ 150 sec.
In addition, for strong collisions, Splitting will require smaller step.
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RK43: An adaptive implementation of RK4

Embedded RK methods RKp(p− 1):

c A

bT

b̂T

yn has order p and ŷn has order p− 1.

Local error estimation:

errn+1 = ∥yn+1 − ŷn+1∥ ≃ C∆tpn.

Standard timestep update: We want C∆tpnew ≃ tol. Replacing
C by errn+1/∆tpn we get

∆tnew =

(
tol

errn+1

)1/p

∆tn.

PI timestep control:

∆tnew =

(
tol

errn+1

)α (errn
tol

)β
∆tn.
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RK43: An adaptive implementation of RK4

RK43
We go back to the non-partitioned equation:

dy

dt
= f(y), y(0) = y0.

The RK43 method is the couple:

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1 1
6

1
3

1
3

1
6

1
6

1
3

1
3

1
6

0

1
6

1
3

1
3

0 1
6

k1 = f(yn), k2 = f(yn +
∆t

2
k1)

k3 = f(yn +
∆t

2
k2), k4 = f(yn + ∆tk3)

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4)

k
∗
1 = f(yn +

∆t

6
(k1 + 2k2 + 2k3 + k4))

ŷn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k

∗
1 )

The error estimation is ∥yn+1 − ŷn+1∥ = ∆t
6 ∥k4 − k∗1∥. Note that

k∗1 = f(yn+1), so k∗1 is the k1 of the next step, so it is free!
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RK43: An adaptive implementation of RK4

Basic adaptive algorithm

Given y0, ∆t0, atol, rtol, tf , and other necessary parameters:

1: t = t0, ynow = y0, ∆tnow = ∆t0, nrej = 0, errold = 1

2: for (n = 1 to nmax) do

3: if (t + ∆tnow ≥ tf ) then

4: ∆tnow = tf − t

5: end if

6: while (.true.) do

7: compute ynext and ŷnext
8: sc = atol + rtol × max(∥ynow∥, ∥ynext∥)
9: err = ∥ynext − ŷnext∥/sc
10: if (err ≤ 1) then ▷ step is accepted

11: t = t + ∆tnow
12: fac = safe ×

(
1

err

)α(
errold

)β
13: ∆tnext = ∆tnow × min(facmax,max(facmin, fac))

14: ∆tnow = ∆tnext, ynow = ynext, errold = err

15: EXIT WHILE LOOP

16: else ▷ step is rejected

17: nrej = nrej + 1

18: fac = safe ×
(

1
err

)α
19: ∆tnext = ∆tnow × max(facmin, fac)

20: ∆tnow = ∆tnext
21: end if

22: end while

23: if (t = tf ) then

24: print "Final time reached"

25: EXIT FOR LOOP

26: end if

27: end for
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RK43: An adaptive implementation of RK4

Preliminary test with RK43

Same mesh but with 24 points in µ. ∆t0 = 4× 10−4,
atol = 10−3, rtol = 10−1, safe = 0.9, α = 0.7/4 = 0.175,
β = 0.4/4 = 0.1, tfinal = 0.5.

Number of accepted steps = 1065 and number of rejected steps = 1
(at the beginning). Maximum timestep used = 5× 10−4 , while
standard RK4 is not stable for this step size (needs ∆t = 2× 10−4).
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Conclusion and Future work

Conclusion & Future Work

✓ We have Implemented and tested two advanced time-stepping
schemes in GENE-X:

→ PIROCK (Ready for production): Stabilized partitioned RK
scheme for stiff problems (e.g., high-collisionality plasmas).

→ RK43 (Almost ready to merge): Adaptive-timestep variant of
classical RK4 for improved efficiency.

Key Findings

✓ PIROCK ∼25% reduction in time-per-step compared to
Strang splitting; eliminates splitting error.

✓ RK43 Automatically adapts ∆t; enables significantly larger
and safe timesteps.

Future Directions

■ Perform extensive benchmarking and validation across
GENE-X test cases.

■ Finalize RK43 integration for production use.

■ Develop an adaptive version of PIROCK.
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Conclusion and Future work

THANK YOU !
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