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Motivation: Accelerating GENE-X EPFL

Primary Goal: To accelerate simulations in the GENE-X code
by implementing more efficient time-stepping schemes.
Current Schemes and Limitations:

B RK4:

— A standard, fixed-step integrator.

— Can be inefficient as it must use a timestep small
enough for the most challenging parts of the
simulation, even when the physics is less dynamic.

B Strang Splitting:

Used to handle different physics (e.g., Vlasov terms
with RK4, collisions terms with RK4 or RKC).

— Introduces additional spitting error.

— Can require more function evaluations than
necessary.
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Motivation: Accelerating GENE-X EPFL

Proposed Solutions:
B PIROCK (Partitioned Runge-Kutta-Chebyshev):

A partitioned scheme that avoids splitting errors.

It is designed for problems with both stiff diffusion
(collisions) and advection (Vlasov) terms.

It uses a stabilized method (ROCK2) for the stiff
part, allowing for much larger timesteps in
high-collisionality scenarios.

B RK43 (Adaptive RK4):

An adaptive-step integrator.

Estimates the local error at each step to
automatically adjust the timestep size At.

This ensures the simulation runs as fast as possible
while maintaining a desired level of accuracy,
avoiding wasted time with unnecessarily small steps.
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Runge-Kutta methods: A quick review

RK methods: General definition EPFL
Consider the ODE

Y_ttw, w0 =

Runge Kutta integration v, — Yn+1

Internal stages — k; = f(tn + ;AL Y, + AtZaijkj), 1=1,...,s,

=1
S
Solution — yp41 = yn + At Z bik;.
i=1
Butcher tableau representation
€1 | a1 a2 ... Qs

Co | 21 Q22 . a2g

c| A
b
Cs | Gs1 Qg2 ... (Qsg

o0 by ... b
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Runge-Kutta methods: A quick review

RK methods: General definition EPFL
Consider the ODE

% = f(tay)7 y(O) = Yo-

Runge Kutta integration y,, +— y,+1 (Equivalent Definition)

S
Internal stages — K; =y, + AtZaijf(tn + At Kj), i=1,...,s,
j=1

Solution — yni1 = yn + At > bif(tn + ;AL K;).

i=1
Butcher tableau representation

€1 |G11 G2 ... Qis
C2 | G21 Q22 ... Q2

cl| A .

b - :
Cs | Gs1 As2 ... Ass
‘ by by ... b
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Runge-Kutta methods: A quick review

Examples of RK methods EPFL

Explicit methods have lower triangular Butcher tableau:

0 0
c2 |a O
c3|asr aszx O

s |as1 ... ... ags—1 O
by by ... b

Common RK methods:

0
111
2 2
1 1
0 310 2
00 0]1 1]1 110 0 1
I I 1 1 1 1
1 1 [z 3 § 3 3 &
Explicit Euler Implicit Euler RK2 RK4
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Runge-Kutta methods: A quick review

Stability of Runge-Kutta methods EPFL
Consider the autonomous ODE

dy(t) _ -

o fy(1)), y(0) = vo,

Stability function. A Runge-Kutta method with timestep At
applied to the linear test problem

dy(t
Zi)=ky, y(0) =y, AeC,

yields y, = R(At\)"yo. The stability region is defined by:
S:={z € C;|R(z)| < 1}.

Example. Explicit Euler: y,11 = yn, + AtAy, R(z) =1+ z.
Stability condition: |1 + AtA| < 1 and for real eigenvalues
—2 < AtA < 0 which leads for diffusion problems the famous
CFL condition At < C'Az?2.
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Runge-Kutta methods: A quick review

Stability regions =PFL
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Figure: Stability regions of explicit Euler, RK2, RK3, and RK4
methods.
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Runge-Kutta methods: A quick review

Explicit stabilized methods (Ideal for diffusion) EPFL
Optimal 1°* order RKC method: Stability region contains

2 21 . _ Ts(wotwiz)
[—1.94s%, 0], stability polynomial Rs(z) = W

10¢ ]
5 N\/\/\/\/\/\/\M
0 Re(2)
o W
~10; —

-350 -300 -250 -200 -150 -100 -50 0

Figure: Stability region of 1% order RKC for s = 13

Nearly optimal 2"? order method ROCK2: Stability region
contains [—0.81s2, 0], stability polynomial Rs(z) = wa(2)Ps_1(2).
10—
S o2 2 2 o 2 2 aahu
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Figure: Stability region of ROCK2 for s = 13
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Runge-Kutta methods: A quick review

Recurrence relations

Y1

Yo,

Yo + Atpr f(yo),

At f (K1) + ViK1 + /i KG_a,
K,

1=2,...,8

For a given step size At, the number of stages s is calculated
adaptively such that A\,q. At < CnSQ,
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Splitting VS Partitioning

Splitting methods ZPFL

dt = fy)+9(), y0)=uyo

where f(y) and g(y) are nonlinear operators (e.g., advection,
collisions, neutrals).

Key idea: Split into subproblems with different physics,
dy dy
=fly)  —

o =9,
and evolve each via a separate solver:
<I>£t(y), P4, (y) denote flow maps of the split subsystems.
Lie Splitting (1st order):
y(t + At) = %, o @ﬁt(y(t))
Strang Splitting (2nd order):

y(t+ At) = L, , 0 D%, 0 DL, ,(y(1)
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Splitting VS Partitioning

Partitioned (additive) RK methods EPFL
dy d
o =T +9w), y(0) = yo € R%.

Partitioned RK methods

=yn +At2az]f(K )+At2ang i=1,..s
= j=1

Yn+1 = Yn + At Z bzf(Kz) + Atzélg(K’b)

Second order conditions

Zbi = Zi)l =1, Z bjai; = Z bla” == (standard 2nd order)

i=1 i,j=1 ij=1
z bia;; = Z b; iQij = j (Coupling order conditions)
i,j=1 ij=1
Advantages:
No additional error coming from splitting.
Less function evaluations needed compared to Strang-splitting.
Ability to use error estimators for adaptive time-stepping.
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PIROCK: An exp t stabilized partitioned s

PIROCK: ROCK2 and RK3 partition EPFL
[Abdulle and Vilmart 2013]

Re(z)

-140 -120 -100 -80 -60 -40 -20 0
Figure: ROCK2 stability regions.

PIROCK is a partitioned RK
method with ROCK2 for
diffusion and RK3 for ol

advection. 3l
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Figure: RK3 stability region.
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An explicit stabilized partitioned scheme

PIROCK stability EPFL

Test equation: %’ = Ay + iuy. Stability polynomial: R(p,q) where
p = At represents a diffusion eigenvalue and ¢ = Aty an advection
eigenvalue.

’ \J

Im(z)

| Re(z)

-100 -80 -60 -40 -20 0 20

Figure: PIROCK stability region for Fp — F4 coupling.

The stability region of PIROCK contains the intervals [—0.43s2, 0]
and [—iv/3,iv/3]. The number of stages must satisfy
AD At
- 043 °
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cheme

PIROCK implementation EPFL
Consider the following ODE:

d

L= Foltyt)  + Falt,y(®) , t>to y(0) = yo,

dt —

collisions + neutrals  Vlasov (plasma in GENE-X)

PIROCK scheme:
Ko =Yn,
K, =yn + apatFpin, yn),
Kj=apjatFpin +cj_at, Kj_p+v;Kj_ +a—vpKj_ o, j=2...,s 1
Finishing procedure for diffusion
Ky | =Kg_,+05atFpity + cg_,at, Kg_ ),
Ks = Kg_, +osatFptn + ¢g_,at, Kg_ ).
Coupling with advection
Ksy = Kg_ ), +ata —2Fptn +cg_ at, Kg_ ),

at
Ksio=Kg_y + —Fapdn +cg_at, Kg_ ),
3

2at
t — Fptn + csiaat, Kgio).
3

Kooy - Kg

s—1
Computation of Yyy 41
-, Ts -,
Yni = Ks — oata — —(Fptn + ég_,at, Kg_ ) — Fptn + cg_,at, Kg_,)
%
at aat
+ —Fptn +cg_,at, Kg_ )+ — Fpn + csysat, Kgig)
. 4
at
+ ————— (Fpn + csaat, Kgp) — Fpin + cg_,at, Kg_ ).
20 — 27y)

Cost per step: s+ 1 Fp (collisions + neutrals) evaluations and ONLY
3 Fa (Vlasov) evaluations.
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PIROCK: An ex stabilized partitioned scheme

Test case: TCV-X21 EPFL
Mesh points: 500 in R, 600 in Z, 32 in ¢, 60 in p, 80 in v.

Total ~ 46 x 10° points. Normalization time 7 ~ 20us. LBD
collision.

Mesh at ¢ = 1.000m

+  Compute points
Ghast paints o/n
+ Target points
-0.4
-02
00 05 10 1
60
Vi
75 =50 -25 00 25 50 75
04
s 2
08
0 1 20 30 40 50 60
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PIROCK: An e °i ilized partitioned scheme

Preliminary test with PIROCK EPFL

Simulation of 500 timesteps with s = 5, At =4 x 10~ on 64 nodes,
2 tasks / node, 56 CPU / task.

Electromagnetic fields for ¢ = 1.000m, t = 0.20000 T

1/ kV Ayy /(Tm)
08 0.010
0.00015
06
0.00010
0.005
04
0.00005
£ 02 \ 0.000 £ \ 0.00000
N N
0.0 ~0.00005
-0.005
02 \ -0.00010
-0.00015
-04 -0.010
06 08 10 0.6 08 10
R/m R/m

Average time / step ~ 112 sec.
Average time / step for Strang-splitting ~ 150 sec.
In addition, for strong collisions, Splitting will require smaller step.
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RK43: An adaptive implementation of RK4

Embedded RK methods RKp(p — 1): EpEL
clA
] b?  y, has order p and 9, has order p — 1.
BT

Local error estimation:

errnt1 = ||[Yn+1 — Gns1|| = CAL.

Standard timestep update: We want C'Athe, ~ tol. Replacing
C by errpi1/Ath we get

1/p
Atnewz< ol ) At,,.

ETTn+1

PI timestep control:

tol @ B
Atnew = ° <€T7'n ) Atn-
erry41 tol
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RK43: An adaptive implementation of RK4

RK43 EPFL

We go back to the non-partitioned equation:

Yot w0 =w

The RK43 method is the couple:

At
0 k1 :f(yn)7 k2:f(yn+7k71)
1)1 .
2 2 X t
1 0 1 k3:f(yn+7k2)7 ka = f(yn + Atks)
2 2
At
110 0 1 Ynt+l = Yn + ?(kl + 2ka + 2k3 + ka)
N T * N
6 3 3 6 kI = f(yn + — (k1 + 2k2 + 2k3 + ka))
11 1 1 g At“’
6 3 3 6 . x
) ) ) Yn+1 = Yn + ?(M + 2ka + 2k3 + ky)
s 3 3 0 %
The error estimation is |[ynt1 — Gnt1 || = 4t |lka — k% || Note that

kT = f(Yn+1), so ki is the ky of the next step, so it is free!
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An adaptive im

Basic adaptive algorithm EPFL

Given yo, Atg, atol, rtol, ty, and other necessary parameters:
1: t =10, Ynow = Y0, Atnow = Atg, nrej =0, erroig =1

2: for (n =1 to nmax) do

3: if (¢t + Atpoy > ty) then

4 Algoy =ty — t

5 end if

6 while (.true.) do

7 compute Ynext and next

8 sc = atol + rtol X max(||ynowll; ||¥next||)

o er7 = |Ynoxs — Grexsl /¢

10: if (err < 1) then > step is accepted
11: t =1t + Atnow

12: fac = safe X (eiT)a(e'r'rold)B

13: Atpext = Atnoy X min(facmaz, max(facmin, fac))
14: Atnow = Alnext, Ynow = Ynext, €T'Told = €rT

15: EXIT WHILE LOOP

16: else > step is rejected
17: nrej = nrej + 1

18: fac = safe x (Eir)a

19: Atpext = Atnoy X max(facmin, fac)

20: Atnow = Atnext

21: end if

22: end while

23: if (¢t =ty) then

24: print "Final time reached"

25: EXIT FOR LOOP

26: end if

27: end for
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RK43: An adaptive implementation of RK4

Preliminary test with RK43 EPFL

Same mesh but with 24 points in p. Aty =4 x 1074,
atol = 1073, rtol = 107!, safe = 0.9, a« = 0.7/4 = 0.175,
B =0.4/4=0.1, tga = 0.5.

Electromagnetic fields for ¢ =1.000m, t = 0.50000 T

&1/ KV Ay, / (Tm)
08 0.04
0.00015
0.03
06
0.00010
0.02
o4 0.0000!
0.01 B >
£ 02 0.00 £ 0.00000
N N
0.0 -oo ~0.00005
=0.02
-02 -0.00010
-0.03
—-0.00015
-04
-0.04
06 08 10 06 08 10
R/m R/m

Number of accepted steps = 1065 and number of rejected steps = 1
(at the beginning). Maximum timestep used = 5 x 10~* | while
standard RK4 is not stable for this step size (needs At =2 x 107%).
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Conclusion and Future work

Conclusion & Future Work EPFL

We have Implemented and tested two advanced time-stepping
schemes in GENE-X:

— PIROCK (Ready for production): Stabilized partitioned RK
scheme for stiff problems (e.g., high-collisionality plasmas).

— RKA43 (Almost ready to merge): Adaptive-timestep variant of
classical RK4 for improved efficiency.
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Conclusion and Future work

Conclusion & Future Work EPFL

We have Implemented and tested two advanced time-stepping
schemes in GENE-X:

— PIROCK (Ready for production): Stabilized partitioned RK
scheme for stiff problems (e.g., high-collisionality plasmas).

— RKA43 (Almost ready to merge): Adaptive-timestep variant of
classical RK4 for improved efficiency.

Key Findings

PIROCK ~25% reduction in time-per-step compared to
Strang splitting; eliminates splitting error.

RK43 Automatically adapts At; enables significantly larger
and safe timesteps.
Future Directions

B Perform extensive benchmarking and validation across
GENE-X test cases.

B Finalize RK43 integration for production use.

B Develop an adaptive version of PIROCK.
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Conclusion and Future work

THANK YOU !
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