Implementing Stabilized and Adaptive Time-Stepping Schemes in GENE-X

Ibrahim Almuslimani

École Polytechnique Fédérale de Lausanne (EPFL)

Swiss Plasma Center (SPC)

TSVV4 annual meeting June 17, 2025

SwissPlasmaCenter

Outline

- 1 Motivation
- 2 Runge-Kutta methods: A quick review
- 3 Splitting VS Partitioning
- 4 PIROCK: An explicit stabilized partitioned scheme
- 5 RK43: An adaptive implementation of RK4
- 6 Conclusion and Future work

Motivation: Accelerating GENE-X

Primary Goal: To accelerate simulations in the GENE-X code by implementing more efficient time-stepping schemes. Current Schemes and Limitations:

■ RK4:

- \rightarrow A standard, fixed-step integrator.
- → Can be inefficient as it must use a timestep small enough for the most challenging parts of the simulation, even when the physics is less dynamic.

■ Strang Splitting:

- ✓ Used to handle different physics (e.g., Vlasov terms with RK4, collisions terms with RK4 or RKC).
- \rightarrow Introduces additional spitting error.
- \rightarrow Can require more function evaluations than necessary.

Motivation: Accelerating GENE-X

Proposed Solutions:

- PIROCK (Partitioned Runge-Kutta-Chebyshev):
 - ✓ A partitioned scheme that avoids splitting errors.
 - ✓ It is designed for problems with both stiff diffusion (collisions) and advection (Vlasov) terms.
 - ✓ It uses a stabilized method (ROCK2) for the stiff part, allowing for much larger timesteps in high-collisionality scenarios.
- RK43 (Adaptive RK4):
 - ✓ An adaptive-step integrator.
 - ightharpoonup Estimates the local error at each step to automatically adjust the timestep size Δt .
 - ▼ This ensures the simulation runs as fast as possible while maintaining a desired level of accuracy, avoiding wasted time with unnecessarily small steps.

RK methods: General definition

Consider the ODE

$$\frac{dy}{dt} = f(t, y), \qquad y(0) = y_0.$$

Runge Kutta integration $y_n \mapsto y_{n+1}$

Internal stages
$$\rightarrow k_i = f(t_n + c_i \Delta t, y_n + \Delta t \sum_{j=1}^s a_{ij} k_j), \quad i = 1, \dots, s,$$

Solution
$$\rightarrow y_{n+1} = y_n + \Delta t \sum_{i=1}^{s} b_i k_i$$
.

Butcher tableau representation

RK methods: General definition

Consider the ODE

$$\frac{dy}{dt} = f(t, y), \qquad y(0) = y_0.$$

Runge Kutta integration $y_n \mapsto y_{n+1}$ (Equivalent Definition)

Internal stages
$$\rightarrow K_i = y_n + \Delta t \sum_{j=1}^s a_{ij} f(t_n + c_j \Delta t, K_j), \quad i = 1, \dots, s,$$

Solution
$$\rightarrow y_{n+1} = y_n + \Delta t \sum_{i=1}^{s} b_i f(t_n + c_i \Delta t, K_i).$$

Butcher tableau representation

Examples of RK methods

Explicit methods have lower triangular Butcher tableau:

Common RK methods:

Explicit Euler

Implicit Euler

RK2

RK4

Stability of Runge-Kutta methods

Consider the autonomous ODE

$$\frac{dy(t)}{dt} = f(y(t)), \qquad y(0) = y_0,$$

Stability function. A Runge-Kutta method with timestep Δt applied to the linear test problem

$$\frac{dy(t)}{dt} = \lambda y, \quad y(0) = y_0, \quad \lambda \in \mathbb{C},$$

yields $y_n = R(\Delta t \lambda)^n y_0$. The stability region is defined by:

$$\mathcal{S} := \{ z \in \mathbb{C}; |R(z)| \le 1 \}.$$

Example. Explicit Euler: $y_{n+1} = y_n + \Delta t \lambda y_n \ R(z) = 1 + z$. Stability condition: $|1 + \Delta t \lambda| \le 1$ and for real eigenvalues $-2 \le \Delta t \lambda \le 0$ which leads for diffusion problems the famous CFL condition $\Delta t \le C \Delta x^2$.

Stability regions

Figure: Stability regions of explicit Euler, RK2, RK3, and RK4 methods.

Explicit stabilized methods (Ideal for diffusion)

Optimal 1^{st} order RKC method: Stability region contains $[-1.94s^2, 0]$, stability polynomial $R_s(z) = \frac{T_s(\omega_0 + \omega_1 z)}{T_s(\omega_0)}$.

Figure: Stability region of 1^{st} order RKC for s = 13

Nearly optimal 2^{nd} order method ROCK2: Stability region contains $[-0.81s^2, 0]$, stability polynomial $R_s(z) = w_2(z)P_{s-1}(z)$.

Figure: Stability region of ROCK2 for s = 13

Recurrence relations

$$K_{0} = y_{0},$$

$$K_{1} = y_{0} + \Delta t \mu_{1} f(y_{0}),$$

$$K_{i} = \mu_{i} \Delta t f(K_{i-1}) + \nu_{i} K_{i-1} + \kappa_{i} K_{i-2}, \quad i = 2, \dots, s$$

$$y_{1} = K_{s},$$

For a given step size Δt , the number of stages s is calculated adaptively such that $\lambda_{max}\Delta t \leq C_{\eta}s^2$,

$$s \ge \sqrt{\frac{\Delta t \lambda_{\max}}{C_{\eta}}}.$$

Splitting methods

$$\frac{dy}{dt} = f(y) + g(y), \quad y(0) = y_0$$

where f(y) and g(y) are nonlinear operators (e.g., advection, collisions, neutrals).

Key idea: Split into subproblems with different physics,

$$\frac{dy}{dt} = f(y)$$
 $\frac{dy}{dt} = g(y),$

and evolve each via a separate solver:

 $\Phi^f_{\Delta t}(y), \quad \Phi^g_{\Delta t}(y)$ denote flow maps of the split subsystems.

Lie Splitting (1st order):

$$y(t + \Delta t) \approx \Phi_{\Delta t}^g \circ \Phi_{\Delta t}^f(y(t))$$

Strang Splitting (2nd order):

$$y(t+\Delta t) \approx \Phi^f_{\Delta t/2} \circ \Phi^g_{\Delta t} \circ \Phi^f_{\Delta t/2}(y(t))$$

Partitioned (additive) RK methods

$$\frac{dy}{dt} = f(y) + g(y), \qquad y(0) = y_0 \in \mathbb{R}^d.$$

Partitioned RK methods

$$K_{i} = y_{n} + \Delta t \sum_{j=1}^{s} a_{ij} f(K_{j}) + \Delta t \sum_{j=1}^{s} \hat{a}_{ij} g(K_{j}) \quad i = 1, ..., s$$
$$y_{n+1} = y_{n} + \Delta t \sum_{i=1}^{s} b_{i} f(K_{i}) + \Delta t \sum_{i=1}^{s} \hat{b}_{i} g(K_{i})$$

Second order conditions

$$\sum_{i=1}^{s} b_i = \sum_{i=1}^{s} \hat{b}_i = 1, \quad \sum_{i,j=1}^{s} b_i a_{ij} = \sum_{i,j=1}^{s} \hat{b}_i \hat{a}_{ij} = \frac{1}{2} \text{ (standard 2nd order)}$$

$$\sum_{i=1}^{s} b_i \hat{a}_{ij} = \sum_{i=1}^{s} \hat{b}_i a_{ij} = \frac{1}{2} \text{ (Coupling order conditions)}$$

Advantages:

- ✓ No additional error coming from splitting.
- ✓ Less function evaluations needed compared to Strang-splitting.
- ✓ Ability to use error estimators for adaptive time-stepping.

PIROCK: ROCK2 and RK3 partition

[Abdulle and Vilmart 2013]

Figure: ROCK2 stability regions.

PIROCK is a partitioned RK method with ROCK2 for diffusion and RK3 for advection.

Figure: RK3 stability region.

PIROCK stability

Test equation: $\frac{dy}{dt} = \lambda y + i\mu y$. Stability polynomial: R(p,q) where $p = \Delta t \lambda$ represents a diffusion eigenvalue and $q = \Delta t \mu$ an advection eigenvalue.

Figure: PIROCK stability region for $F_D - F_A$ coupling.

The stability region of PIROCK contains the intervals $[-0.43s^2, 0]$ and $[-i\sqrt{3}, i\sqrt{3}]$. The number of stages must satisfy

$$s \ge \sqrt{\frac{\lambda_{\max}^{D} \Delta t}{0.43}}$$

PIROCK implementation

Consider the following ODE:

$$\frac{dy}{dt} = \underbrace{F_D(t,y(t))}_{\text{collisions + neutrals}} + \underbrace{F_A(t,y(t))}_{\text{(plasma in GENE-X)}}, \quad t \geq t_0 \quad y(0) = y_0,$$

PIROCK scheme:

$$\begin{split} K_0 &= y_n\,, \\ K_1 &= y_n + \alpha \mu_1 \Delta t F_D(t_n\,,y_n)\,, \\ K_j &= \alpha \mu_j \Delta t F_D(t_n\,+c_{j-1}\Delta t\,,K_{j-1}) + \nu_j K_{j-1} + (1-\nu_j)K_{j-2}, \quad j=2,\ldots,s-1. \\ &\text{Flinkhing procedure for diffusions} \\ \tilde{K}_{S-1} &= K_{S-2} + \sigma_S \Delta t F_D(t_n\,+c_{S-2}\Delta t\,,K_{S-2})\,, \\ \tilde{K}_S &= \tilde{K}_{S-1} + \sigma_S \Delta t F_D(t_n\,+c_{S-1}\Delta t\,,\tilde{K}_{S-1})\,. \\ &\text{Coupling with advection} \\ K_{S+1} &= K_{S-1} + \Delta t (1-2\gamma)F_A(t_n\,+c_{S-1}\Delta t\,,K_{S-1})\,, \\ K_{S+2} &= K_{S-1} + \frac{\Delta t}{3}F_A(t_n\,+c_{S-1}\Delta t\,,K_{S-1})\,, \\ K_{S+3} &= K_{S-1} + \frac{2\Delta t}{3}F_A(t_n\,+c_{S+2}\Delta t\,,K_{S+2})\,. \\ &\text{Computation of } y_{n+1} : \\ y_{n+1} &= \tilde{K}_S - \sigma \Delta t (1-\frac{\tau_S}{\sigma_S^2})(F_D(t_n\,+c_{S-1}\Delta t\,,\tilde{K}_{S-1}) - F_D(t_n\,+c_{S-2}\Delta t\,,K_{S-2})) \\ &+ \frac{\Delta t}{4}F_A(t_n\,+c_{S-1}\Delta t\,,K_{S-1}) + \frac{3\Delta t}{4}F_A(t_n\,+c_{S+3}\Delta t\,,K_{S+3}) \\ &+ \frac{\Delta t}{3}(F_D(t_n\,+c_{S+1}\Delta t\,,K_{S+1}) - F_D(t_n\,+c_{S-1}\Delta t\,,K_{S-1}))\,. \end{split}$$

Cost per step: $s + 1 F_D$ (collisions + neutrals) evaluations and ONLY $3 F_A$ (Vlasov) evaluations.

Test case: TCV-X21

Mesh points: 500 in R, 600 in Z, 32 in ϕ , 60 in μ , 80 in v_{\parallel} . Total $\simeq 46 \times 10^9$ points. Normalization time $\tau \simeq 20 \mu s$. LBD collision.

Preliminary test with PIROCK

Simulation of 500 timesteps with $s=5, \, \Delta t=4\times 10^{-4}$ on 64 nodes, 2 tasks / node, 56 CPU / task.

Average time / step $\simeq 112$ sec.

Average time / step for Strang-splitting $\simeq 150$ sec.

In addition, for strong collisions, Splitting will require smaller step.

Embedded RK methods RKp(p-1):

$$\begin{array}{c|c}
\mathbf{c} & \mathbf{A} \\
\hline
 & \mathbf{b}^T \\
\hline
 & \hat{\mathbf{b}}^T \\
\end{array}$$
 y_n has order p and \hat{y}_n has order $p-1$.

Local error estimation:

$$err_{n+1} = ||y_{n+1} - \hat{y}_{n+1}|| \simeq C\Delta t_n^p.$$

Standard timestep update: We want $C\Delta t_{new}^p \simeq \text{tol.}$ Replacing C by $err_{n+1}/\Delta t_n^p$ we get

$$\Delta t_{\text{new}} = \left(\frac{\text{tol}}{err_{n+1}}\right)^{1/p} \Delta t_n.$$

PI timestep control:

$$\Delta t_{\text{new}} = \left(\frac{\text{tol}}{err_{n+1}}\right)^{\alpha} \left(\frac{err_n}{\text{tol}}\right)^{\beta} \Delta t_n.$$

We go back to the non-partitioned equation:

$$\frac{dy}{dt} = f(y), \qquad y(0) = y_0.$$

The RK43 method is the couple:

The error estimation is $||y_{n+1} - \hat{y}_{n+1}|| = \frac{\Delta t}{6} ||k_4 - k_1^*||$. Note that $k_1^* = f(y_{n+1})$, so k_1^* is the k_1 of the next step, so it is free!

Basic adaptive algorithm

```
Given y_0, \Delta t_0, atol, rtol, t_f, and other necessary parameters:
1: t = t_0, y_{now} = y_0, \Delta t_{now} = \Delta t_0, nrej = 0, err_{old} = 1
2: for (n=1 to n_{\mathrm{max}}) do
         if (t + \Delta t_{\text{now}} \ge t_f) then
 3:
              \Delta t_{\text{now}} = t_f - t
4:
         end if
 5.
6:
         while (.true.) do
7:
              compute y_{next} and \hat{y}_{next}
              sc = atol + rtol \times max(||y_{now}||, ||y_{next}||)
8:
              err = ||y_{\text{next.}} - \hat{y}_{\text{next.}}||/sc
9:
10:
              if (err < 1) then
                                                                                                                   > step is accepted
                   t = t + \Delta t_{now}
11:
                   fac = safe \times \left(\frac{1}{err}\right)^{\alpha} \left(err_{old}\right)^{\beta}
12:
                   \Delta t_{\text{next}} = \Delta t_{\text{now}} \times \min(facmax, \max(facmin, fac))
13:
14:
                   \Delta t_{\text{now}} = \Delta t_{\text{next}}, y_{\text{now}} = y_{\text{next}}, err_{\text{old}} = err
                   EXIT WHILE LOOP
15:
16:
               else
                                                                                                                   > step is rejected
17:
                   nrej = nrej + 1
                   fac = safe \times \left(\frac{1}{app}\right)^{\alpha}
18:
                   \Delta t_{\text{next}} = \Delta t_{\text{now}} \times \max(facmin, fac)
19:
20:
                   \Delta t_{\text{now}} = \Delta t_{\text{next}}
21:
               end if
22.
          end while
23:
          if (t = t_f) then
24:
               print "Final time reached"
25:
               EXIT FOR LOOP
26.
          end if
```

27: end for

Preliminary test with RK43

Same mesh but with 24 points in μ . $\Delta t_0 = 4 \times 10^{-4}$, $atol = 10^{-3}$, $rtol = 10^{-1}$, safe = 0.9, $\alpha = 0.7/4 = 0.175$, $\beta = 0.4/4 = 0.1$, $t_{\rm final} = 0.5$.

Number of accepted steps = 1065 and number of rejected steps = 1 (at the beginning). Maximum timestep used = 5×10^{-4} , while standard RK4 is not stable for this step size (needs $\Delta t = 2 \times 10^{-4}$).

Conclusion & Future Work

- ▼ We have Implemented and tested two advanced time-stepping schemes in GENE-X:
 - → **PIROCK** (Ready for production): Stabilized partitioned RK scheme for stiff problems (e.g., high-collisionality plasmas).
 - ightarrow RK43 (Almost ready to merge): Adaptive-timestep variant of classical RK4 for improved efficiency.

Key Findings

- ▶ PIROCK ~25% reduction in time-per-step compared to Strang splitting; eliminates splitting error.
- **RK43** Automatically adapts Δt ; enables significantly larger and safe timesteps.

Future Directions

- Perform extensive benchmarking and validation across GENE-X test cases.
- Finalize RK43 integration for production use
- Develop an adaptive version of PIROCK.

Conclusion & Future Work

- ▼ We have Implemented and tested two advanced time-stepping schemes in GENE-X:
 - → **PIROCK** (Ready for production): Stabilized partitioned RK scheme for stiff problems (e.g., high-collisionality plasmas).
 - ightarrow RK43 (Almost ready to merge): Adaptive-timestep variant of classical RK4 for improved efficiency.

Key Findings

- **▼ PIROCK** ~25% reduction in time-per-step compared to Strang splitting; eliminates splitting error.
- **RK43** Automatically adapts Δt ; enables significantly larger and safe timesteps.

Future Directions

- Perform extensive benchmarking and validation across GENE-X test cases.
- Finalize RK43 integration for production use
- Develop an adaptive version of PIROCK.

Conclusion & Future Work

- ▼ We have Implemented and tested two advanced time-stepping schemes in GENE-X:
 - → **PIROCK** (Ready for production): Stabilized partitioned RK scheme for stiff problems (e.g., high-collisionality plasmas).
 - ightarrow RK43 (Almost ready to merge): Adaptive-timestep variant of classical RK4 for improved efficiency.

Key Findings

- **▼ PIROCK** ~25% reduction in time-per-step compared to Strang splitting; eliminates splitting error.
- **RK43** Automatically adapts Δt ; enables significantly larger and safe timesteps.

Future Directions

- Perform extensive benchmarking and validation across GENE-X test cases.
- Finalize RK43 integration for production use.
- Develop an adaptive version of PIROCK.

EPFL

THANK YOU!