
Parallelizing Monte Carlo Neutral Transport

Oskar Lappi

May 2025

1 / 32



Issue: performance & scalability

EIRENE was written in the early 1980s, when JET was being built.
ITER is 10× the volume of JET, and the plasma is more collisional.
EIRENE doesn’t implement domain decomposition (DD).

More collisions in ITER sims =⇒ More work for the kinetic model
ITER is 10× bigger =⇒ Higher resolution needed

Higher res. grids & no DD =⇒ Growing process memory footprint
=⇒ EIRENE is the bottleneck in ITER

sims

2 / 32



Legacy software is tricky to work with

• EIRENE is tightly coupled with a number of plasma solvers
• EIRENE supports a rich set of parameters and grid types
• EIRENE simulates a single particle history from start to finish

in one go — which is an assumption that will be present in
much of the code base

It’s tricky to implement a big feature like domain decomposition
while making sure not to break any of this, so I’ve done it in a new
code: Eiron.

3 / 32



High-level algorithm for simulating one particle

1. Sample particle from a source distribution
2. Follow the trajectory of a particle, integrating over the cross

section until the sum equals an RNG exponential variable
3. Estimate particle density, etc., along the trajectory
4. Sample an outcome of a collision event at that point
5. Repeat 2,3,4 until particle is terminated

4 / 32



Monte Carlo transport
Particle density, 2562 grid, 100 samples (17 ms, 128 cores)

5 / 32



Monte Carlo transport
Particle density, 2562 grid, 1K samples (23ms, 128 cores)

6 / 32



Monte Carlo transport
Particle density, 2562 grid, 10K samples (42 ms, 128 cores)

7 / 32



Monte Carlo transport
Particle density, 2562 grid, 100K samples (220 ms, 128 cores)

8 / 32



Monte Carlo transport
Particle density, 2562 grid, 1M samples (1.9 s, 128 cores)

9 / 32



Monte Carlo transport
Particle density, 2562 grid, 10M samples (18 s, 128 cores)

10 / 32



Technologies used

Eiron is written using C++, OpenMP, and MPI.

OpenMP is a preprocessor-based framework, preprocessor
pragmas are used to specify parallel regions where many threads
execute simultaneously, typically you divide work in a big loop
among many threads.

MPI is a high-performance message passing standard where,
typically, a single program is executed by multiple processes with
the same communication context for passing messages.

11 / 32



Parallel algorithms in Eiron

OpenMP-shared
Particle ranges are assigned to OpenMP threads.
OpenMP threads share one estimation grid.

OpenMP-private
Particle ranges are assigned to OpenMP threads.
Each OpenMP-thread has a private estimation grid.

MPI-domain-decomposed
MPI ranks are assigned subdomains.
Particles crossing subdomain boundaries are sent asynchronously to
neighboring ranks.

12 / 32



Algorithm OpenMP-shared
for each source in sources do

for particles in source, in parallel over threads do
Simulate particle, estimate into shared estimation grid

This is how EIRENE does OpenMP. It requires all writes to the
estimation grid to be done with atomic increments.

There’s also cache communication overhead/cache thrashing:
when thread/core B tallies to a cache line that thread/core A has
previously tallied to, the cache line has to be moved:

core A cache → main memory → core B cache
Because B then writes to the cache line, the cache line instance in
core A is invalidated; if A goes to tally to the cache line, the same
happens in reverse.

13 / 32



Algorithm OpenMP-private
In an OpenMP parallel region
Create thread-private copy of estimation grid
for each source in sources do

for particles in source, in parallel over threads do
Simulate particle, estimate into private estimation grid

Reduce estimation grids

This one does not have the issues of the shared memory tallies, but
the memory use does scale linearly with the number of threads.

14 / 32



Domain decomposition
Domain decomposition is what you reach for when your simulation
space is too big to efficiently simulate in a single process.

Domain-decomposed Monte Carlo has been done before, but, in all
papers I’ve read, communication is done using synchronous or
semi-asynchronous multi-particle buffer messages.

Eiron sends asynchronous single-particle messages using queues of
message buffers and MPI request objects.

15 / 32



Algorithm MPI-domain-decomposed
Partition grid and assign subdomains to MPI ranks
Find local particle sources (overlapping a local subdomain)
Mark all ranks as active
while there are active particles and active ranks do

Try to generate particle from local sources
if no particle generated then

Try to receive particle
Simulate particle (if there is one)

if particle crossed subdomain boundary then
Send particle forward
Mark particle as active (if locally generated )

if particle terminated then
send ”particle.id done” to generating rank

if local sources depleted and no active particles then
broadcast ”local rank done” to all ranks

Receive ”particle done” and ”rank done” messages
Mark those particles and ranks as inactive

16 / 32



Strong scaling experiments
• 6 grid resolutions: 1282, 2562, 5122, 10242, 20482, 40962

• 2 mean free paths: 0.05 grid lengths, 0.25 grid lengths
• 3 scattering fractions: 0.01, 0.5, 0.99

• the scattering fraction = #Scattering events
#All bg collision events

The core count is doubled 7 times & there are 3 parallel algorithm
=⇒ there are 6 × 2 × 3 × (1 + 3 × 7) = 792 configurations.

We run each config 5 times and report the minimum.

The strong scaling experiments were run on CSC’s Mahti, where
one node contains two 64-core AMD Rome 7H12 CPUs.

In the interest of time, let’s focus on two extremes:
• λ = 0.25, scattering fraction = 0.01
• λ = 0.05, scattering fraction = 0.99

17 / 32



λ = 0.25 · grid length, scattering = 1%

18 / 32



λ = 0.05 · grid length, scattering = 99%

19 / 32



Superlinear scaling

Why is domain-decomposition
scaling superlinearly? L3 cache.
In AMD’s Zen 2 architecture,
four cores share one L3 cache
with 16 MiB.

Velten et al., 2022, measured the
L3 cache latency of a Zen2 CPU
to be 20 ns, and main memory
latency to be 110 ns.

Image from: Docs CSC, https://docs.csc.fi/computing/systems-mahti/

20 / 32

https://docs.csc.fi/computing/systems-mahti/


Superlinear scaling

I did not have the foresight to record cache misses or hits in my
benchmarks, but we can model cache miss ratios of Monte Carlo
grid access on this CPU architecture, and we can see that 5122

grids fit into L3 completely, removing the cost of cache misses.

Grid resolution Mem. footprint shared L3 miss ratio L3 slice miss ratio L2 miss ratio
1282 512 KiB 0% 0% 0%
2562 2 MiB 0% 0% 50%
5122 8 MiB 0% 50% 87.5%
10242 32 MiB 50% 87.5% 87.5%
20482 128 MiB 87.5% 98.4% 99.6%
40962 512 MiB 98.4% 99.6% 99.9%

5122 is also the largest grid resolution that scales linearly, with no
(large) superlinear improvement.

21 / 32



Process memory footprint is main performance factor

• This is a log-log plot
• Bigger effect than any

simulation parameters
• Bigger effect than the

number of cores used

22 / 32



KDMC work

• Collab with Emil Løvbak, Thijs Steel, Giovanni Samaey
• 2D KDMC in Eiron
• Compared it to regular, kinetic, Monte Carlo
• Writing a paper for PET
• Will now show KDMC experiments in high collision regime
• No ionization, cutoff after t=50

23 / 32



Kinetic, 1010 particles, λ = 0.035

24 / 32



KDMC, 1010 particles, λ = 0.035

25 / 32



Diff, 1010 particles, λ = 0.035

26 / 32



Kinetic, 1010 particles, λ = 0.0035

27 / 32



KDMC, 1010 particles, λ = 0.0035

28 / 32



Diff, 1010 particles, λ = 0.0035

29 / 32



Further work

We’re writing the main Eiron paper currently, still working on weak
scaling experiments and reviewing the literature. Also writing a
paper on KDMC with Emil, Thijs, and Giovanni.

I believe this to be a novel domain decomposition algorithm.

The findings comparing different approaches should be valuable for
existing Monte Carlo projects as well as new developments.

Future work would look at hybrid OMP/MPI or GPU
implementations, also context switching subdomains within a
single process.

30 / 32



Where to get it:

Git repo: https://version.helsinki.fi/lapposka/eiron
Contact: oskar.lappi@helsinki.fi

Note: there is no user manual, and the physics is very bare bones.
Please contact me if you want to use Eiron, I’m interested in
working together to develop Eiron into a useful code.

31 / 32

https://version.helsinki.fi/lapposka/eiron


Thank you

Questions/Comments

32 / 32


