

Scientific goals of JT-60SA and timeline until W transition

Jeronimo Garcia Presented by Y. Kazakov on behalf of the JT-60SA Experiment Leaders

PSD Meeting on the transition to Tungsten PFCs in JT-60SA 17 June 2025

2

Operation Phases and Status of Key Components

Research phase	Focus of exploitation	Operation Campaign	Expected operation schedule	1	Annual neutron limit	RH	Divertor	Installed NB power	ECRF	Max. usable aux. power ²
Initial research phase I	Integrated Commissioning	Op-1	2020-2021 (6M) 2023 (6M) First plasma 2023	н	-		Open upper inertially cooled carbon ³	0	1.5 MW (2 Gyro.)	1.5MW
	 Initial stable and reliable operation H operation for commissioning towards D operation. 	Op-2	2026-2027				Lower pumped carbon with intershot cooling ⁴ (limits high power heating duration) C-ICD	PNB 8 units, plus NNB Total 16MW (with H)	3 MW (4 gyro)	19MW
	 Stable operation at high current heated plasma 			D		R&D				26.5MW
Initial research phase II		Op-3	2027-2028 (11M)		3.2e19			(with D)		
	 ITER and DEMO regime access (high power and high Ip with short pulses) Access to ITER-relevant high confinement H-mode at high Ip High beta access ITER risk mitigation (ELM, disruption) 	Op-4	2029 (11M)					PNB 12 <u>units,</u> plus NNB Total		33 MW
		No. of campaigns to be confirmed	TBD							
Integrated research phase I	High beta and metal wall compatibility	TBD	TBD		4.0e20		W-ACD	30 MW	7MW (9 gyro.)	275414/
Integrated research phase II	High beta long pulse Burning plasma relevant • ITER standard and hybrid	TBD	TBD		1.0e21		Actively cooled lower pumped tungsten			5710100
Extended research phase	 stationary (~2-3τ_R) High beta steady-state (~2-3τ_R), DEMO contribution 	TBD	TBD		1.5e21	Use		34MW⁵		41MW

High Level Project Schedule

2020	2021	2022 2023 2024		2025	20	026	2027	7	202	28	2029	
IC	Re	epair + restart	IC & OP1	Maintenance & (M	Enhancement 1 E1)		OP	2 ME2	OF (11	P3 1M)	ME3 (6M)	OP4 (11M)

[BASC-34, December 2024]

- Transition from ME1 to OP2 in 2026
- Each operating period is extended as long as possible (11M)
- Operating period includes cool-down, pump-down, wall-conditioning, comissioning etc
- Beyond 2029, Project aims to prioritize the development of integrated scenarios with W div/wall. No longer intended C-ACD
- OP4 may be the last opportunity to perform experiments in C-wall (TBC)

Scientific strategy for JT-60SA initial phases

- Scientific priorities for OP2-OP4 have been discussed and decided in the ET during 2023-2024
- Several events have impacted such a development:
 - Decision to skip the C actively cooled divertor and move towards W- ACD
 ITER rebaseline and new IRP
 - Scientific results and plans from other tokamaks and projects

Scientific strategy for JT-60SA initial phases

- Scientific priorities for OP2-OP4 have been discussed and decided in the ET during 2023-2024
- Several events have impacted such a development:
 - Decision to skip the C actively cooled divertor and move towards W- ACD
 ITER rebaseline and new IRP
 - Scientific results and plans from other tokamaks and projects
- The development of scientific priorities has been carried at different levels:
 - General priorities for the C phase → Priorities per campaign (OP2-OP4) → L1 experimental programme for OP2

Main Subjects during C-ICD phase

Classification of priority level: (i) essential, (ii) important, (iii) desirable.

- I. Should be done in early phase for robust general operation in JT-60SA and/or key physics identification with the machine uniqueness. Those will need dedicated shots. "*Minimum request before going to W-wall*"
- II. Can reduce risks in W-wall experiments including required actuator assessment. Those should be done to a certain level through the items (i). Some dedicated shots will be required for documentation.
- III. Will be beneficial by taking advantage of the C-wall, wider operational regimes, and obtain physics understanding however, these topics could be potentially investigated by (i)/(ii) analyzing discharges developed for other experiments

Priority (i): Essential

Operation Regime Development

- Break down and plasma formation studies in conditions of low loop voltage,
- Safe increase of toroidal current up to 5.5MA in L-mode,
- Test of fundamental plasma control schemes: plasma current, position, density, heating as those done in the typical tokamaks, like JT-60U, JET.
- Initial development of the access to ITER-relevant H-mode scenario (H₉₈(y,2)~1, β_N~1.8), high beta (H₉₈(y,2)~1-1.2, β_N~3-3.5), and low collisionality.

MHD Stability and Control

- Error field measurement, characterization and impact on locked mode
- Disruption studies at high current in L-mode to obtain an operation guideline
- Runaway electrons generation and control studies.

Priority (i): Essential

Transport and Confinement

- Initial characterization of H-mode confinement,
- Characterization of H-mode confinement in type-I ELMs plasmas,
- Testing of core and pedestal W screening with TESPEL/partial W tile/Xenon gas.

High Energy Particle Behavior

- Shine-through studies in H and D, especially with N-NBI,
- Initial studies of fishbone and Alfvén modes destabilization by N-NBI,
- Neutron emission studies and reproducibility with codes,
- Characterization of fast ions losses at high N-NBI power.

Priority (i): Essential

Pedestal and Edge Physics

- L-H power threshold characterization in H and D,
- Pedestal and ELMs generation studies in different plasma conditions,
- Characterization of the access to type-I ELMs.

Divertor, Scrape Off Layer and Plasma-Material Interaction

- Wall conditioning,
- Characterization of heat flux to divertor in the ITER-relevant H-mode scenarios developed and neutral compression by the V-shaped corner,
- SOL width scaling at high Ip.

Headlines in Op2

• Key commissioning in H for scientific experiments

- Commissioning NB injectors into plasma, including monitoring of shine-through vs energy (esp. N-NBI)
- $\,\circ\,$ Step-by-step increase of plasma current up to 5.5 MA in L-mode
- $\,\circ\,$ Test of plasma control schemes: current, position, density, heating

• ITER risk mitigation

- $\,\circ\,$ Studies of L-H transition
- Disruption and mitigation technique studies
- o Runaway generation and mitigation technique studies

<u>Scenario development</u>

o Initial integrated scenarios development towards high confinement H-mode operation

Headlines in Op3

<u>Consolidate results from OP2</u>

• ITER risk mitigation

- Optimise ELM control and disruption mitigation with a focus on risk reduction for ITER
- Advanced studies about the destabilization of Alfvén modes by N-NBI and impact on fast ions confinement and turbulence

<u>Scenario development</u>

- Further development of integrated scenarios including advanced real time control techniques
- Initial steps towards radiative integrated scenarios
- Initial steps towards high beta scenario development, hybrid and ITB, for ITER and DEMO and specific transport and turbulence studies in this regime

High Level Project Schedule

2020		2021	2022	2023	2024	2025	2026		2027		2028		2029	
	IC	Re	epair + restart	IC & OP1	Maintenance & (M	Enhancement 1 E1)		OP2	2 ME2 (4M)	OP3 (11M)	8 N	ИЕЗ (6M)	OP4 (11M)	

[BASC-34, December 2024]

- Transition from ME1 to OP2 in 2026
- Each operating period is extended as long as possible (11M)
- Operating period includes cool-down, pump-down, wall-conditioning, comissioning etc
- Beyond 2029, Project aims to prioritize the development of integrated scenarios with W div/wall. No longer intended C-ACD
- OP4 may be the last opportunity to perform experiments in C-wall (TBC)