

Electromagnetic edge plasma turbulence simulations in varying beta conditions

Raffael Düll 1

¹ CNRS M2P2

TSVV1 annual meeting

Garching b. München - October 8, 2025

The SOLEDGE3X Framework

- Fluid solver for the drift-reduced Braginskii equations [Bufferand et al. 2022]
- Conservation equations for density, parallel momentum, and energy
- Finite-volume method, implicit-explicit time integration
- Perpendicular dynamics dominated by drifts:

$$eta = rac{p}{p_{
m mag}} = rac{{
m en}T}{B^2/2\mu_0}$$

$$\mathbf{v}_{\perp} = \underbrace{\mathbf{v}_{E}}_{ ext{electric}} + \underbrace{\mathbf{v}_{*}}_{ ext{diamagnetic}} + \underbrace{\mathbf{v}_{p}}_{ ext{polarization}}$$

- Assumptions:
 - Higher collisionality at low temperatures
 - ullet Static poloidal field at low-eta
 - Quasineutrality
- Fixed axisymmetric magnetic equilibrium:
 - $\bullet \ \mbox{Meshing aligned to flux surfaces, domain} \\ \mbox{extends edge} \rightarrow \mbox{wall}$

Drift-driven transport

Ingredients for Electromagnetism

Starting point: Electrostatic non-adiabatic electron response to fluctuations [Bufferand et al. 2022]

MAGNETIC INDUCTION

Variation of the magnetic vector potential in the parallel electric field:

$$E_{\parallel} = -\nabla_{\parallel} \Phi - \partial_t A_{\parallel}$$

where A_{\parallel} is known from Ampère's law:

$$\nabla_{\perp}^2 A_{\parallel} = \mu_0 j_{\parallel}$$

FLUTTER

Fluctuations of the magnetic field induced by A_{\parallel} . Consequence of the definition of the magnetic vector potential:

$$\nabla \times \mathbf{A} = \mathbf{B}$$

ELECTRON INERTIA

Non-zero electron mass: the non-adiabatic electron response to fluctuations is delayed by an inertial term

$$\frac{m_e}{n_e e^2} \, \partial_t j_{\parallel} + \nabla \cdot \left(j_{\parallel} \mathbf{v}_j \right)$$

Full Electromagnetic Model Equations

$$\partial_t n_i + \nabla \cdot \left(n_i \left(\mathbf{v}_{\perp} + v_{\parallel} \boxed{\mathbf{b}} \right) \right) = S_{n,i}$$

Flutter
$$\mathbf{b} = \mathbf{b}_{eq} + \mathbf{b}_{pert}$$

4/19

Parallel momentum conservation:
$$m_i \partial_t \Gamma_i + m_i \nabla \cdot \left(\Gamma_{\parallel,i} \left(\mathbf{v}_{\perp} + v_{\parallel} \mathbf{b} \right) \right) = Z_i n_i E_{\parallel} - \nabla \cdot \left(\nu_{\parallel} \mathbf{b} \cdot \nabla v_{\parallel} \right) + R_{\parallel,i} + S_{\Gamma,i}$$

Electron energy conservation:
$$\partial_t \varepsilon_e + \nabla \cdot \left(\left(\varepsilon_e + p_e \right) \left(\mathbf{v}_\perp + v_\parallel \mathbf{b} \right) \right) = \left(\mathbf{v}_\perp + v_\parallel \mathbf{b} \right) \cdot \left(-n_e \mathbf{E} + \mathbf{R}_e - \nabla \cdot \mathbf{\Pi}_e \right)$$

$$- \boldsymbol{\nabla} \cdot \left(\kappa_{\parallel} \mathbf{b} \cdot \boldsymbol{\nabla} T_{e} \right) + S_{\varepsilon,e}$$

$$\text{Ion energy conservation:} \quad \partial_t \varepsilon_i + \nabla \cdot \left(\left(\varepsilon_i + p_i \right) \left(\mathbf{v}_\perp + v_\parallel \boxed{\mathbf{b}} \right) \right) = \left(\mathbf{v}_\perp + v_\parallel \boxed{\mathbf{b}} \right) \cdot \left(Z_i n_i \mathbf{E} + \mathbf{R}_i - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_i \right)$$

$$\begin{array}{l} \left(\mathbf{V}_{\perp} + \mathbf{V}_{\parallel} \mathbf{D}\right) \cdot \left(\mathbf{Z}_{i} n_{i} \mathbf{E} + \mathbf{R}_{i} - \mathbf{V} \cdot \mathbf{\Pi}_{i}\right) \\ - \nabla \cdot \left(\kappa_{\parallel} \mathbf{D} \cdot \nabla T_{i}\right) - \nabla \cdot \left(\nu_{\parallel} \mathbf{D} \cdot \nabla v_{\parallel}^{2}\right) + S_{\varepsilon, i} \end{array}$$

Ampère's law:

Ohm's law:
$$\eta_{\parallel}$$

$$\nabla \cdot \nabla_{\perp} A_{\parallel} + \mu_0 j_{\parallel} =$$

 $\nabla \cdot \nabla_{\perp} A_{\parallel} + \mu_0 j_{\parallel} = 0$ Magnetic induction

Sheath boundary conditions:

Particle flux $\Phi_{n,BC}$ from the Bohm–Chodura condition $v_{BC} > c_s$ Energy flux $\Phi_{\varepsilon,BC} = \gamma T \Phi_{n,BC}$ with the sheath transmission coefficient γ Sheath current $j_{BC}=Z_i e \Phi_{n,BC} \left(1-e^{\Lambda-\phi/T_e}\right)$ with the potential drop Λ Magnetic vector potential $A_{BC} = 0$

Implicit Resolution of the Electromagnetic Vorticity Equation

Resistive, Alfvénic and electron inertia occur at fast time scales ightarrow Implicit resolution in a coupled system

Electrostatic

$$\left(D_{\perp}\partial_{t}\nabla_{\perp}^{2}+D_{\parallel}\nabla_{\parallel}^{2}\right)\left(\phi\right)=\ldots$$

with: $D_{\perp}=rac{m_i n_i}{B^2}$ and $D_{\parallel}=rac{1}{\eta_{\parallel}}$

High anisotropy!

Electromagnetic

$$\begin{pmatrix} D_{\perp}\partial_t\nabla_{\perp}^2 + D_{\parallel}\nabla_{\parallel}^2 & \beta_0D_{\parallel}\partial_t\nabla_{\parallel} \\ -D_{\parallel}\nabla_{\parallel} & \beta_0D_{\parallel}\partial_t - \nabla_{\perp}^2 \end{pmatrix} \begin{pmatrix} \phi \\ A_{\parallel} \end{pmatrix} = \dots$$

with: $D_{\perp}=rac{m_i n_i}{B^2 \delta_t}$ and $D_{\parallel}=rac{1}{\eta_{\parallel}+m_e/(n_e \delta_t)}$

The parallel current j_{\parallel} can be decoupled

- ightarrow updated in a second step
- ullet Electron inertia improves the condition for low resistivity η_{\parallel}
 - parallel diffusion coefficient on ϕ : $1/\eta \to 1/(\eta + m_e/(n_e\delta_t))$.
- Magnetic induction deteriorates the matrix condition for low β_0 .
- The **condition number** of the electromagnetic system worsens twice as fast with the perpendicular resolution.

Calculating Electromagnetic Flutter

Assume small perturbations of the magnetic field:

$$\mathbf{B} = \mathbf{B}_{eq} + \mathbf{B}_{\mathsf{pert}}$$

From the value of the toroidal fluctuation field \tilde{A}_{\parallel} :

$$\mathbf{B}_{\mathsf{pert}} =
abla imes \left(\mathbf{b}_{eq} A_{\parallel}
ight) - \mathbf{b}_{eq} imes
abla A_{\parallel}$$

Why toroidal fluctuations of \tilde{A}_{\parallel} ?

The toroidal component of A_{\parallel} overlaps with the poloidal flux function Ψ to generate the magnetic configuration

 Risk of accounting parts of the Grad–Shafranov shift twice

$$\tilde{A}_{\parallel}=A_{\parallel}-\langle A_{\parallel}\rangle_{\varphi}$$

Figure 1: Parallel magnetic vector potential on a TCV configuration

Linear analysis of drift-wave instabilities

- ExB drift advection coupled with Ampère's law and electron inertia in an isothermal setting
- Imposed parallel modes $k_{\parallel}=0.6 {\rm m}^{-1}$ and radial density gradients $\lambda_n=0.1 {\rm m}$
- ullet 3D slab with uniform magnetic field $B_{arphi}=1$ T

$$\begin{split} \partial_t n + \mathbf{v}_E \cdot \nabla n &= \frac{1}{e} \nabla \cdot (j_{\parallel} \mathbf{b}) \\ \frac{n m_i}{B^2} \partial_t \nabla_{\perp}^2 \Phi &= \nabla \cdot (j_{\parallel} \mathbf{b}) \\ \left(\eta_{\parallel} + \frac{m_e}{n_e e^2} \partial_t \right) j_{\parallel} &= \frac{T_e}{n} \nabla_{\parallel} n - \nabla_{\parallel} \Phi - \partial_t A_{\parallel} \\ \nabla_{\perp}^2 A_{\parallel} &= -\mu_0 j_{\parallel} \end{split}$$

Dispersion relation:

$$\begin{split} i\left(\underbrace{\rho_{L,e}^2k_{\perp}^2}_{\text{finite }m_e} + \underbrace{\beta_0}_{\text{induct.}}\right)\omega^3 + \left(-\underbrace{i\beta_0\omega_*}_{\text{flutter}} - \underbrace{\frac{\eta_{\parallel}\,\text{en}_0\,T_0k_{\perp}^2}{B^2}}_{\text{resistivity}}\right)\omega^2 \\ -i\omega_s^2\left(\omega_* - \left(1 + \rho_L^2k_{\perp}^2\right)\omega\right) = 0 \end{split}$$

Figure 2: Change in growth rate of the most unstable mode opposed to the ES model for increasing temperature

Impact on Drift-Wave Turbulence 1/2

Simulation set-up:

Figure 3: Scheme of the slab geometry

Width $0.1m \times 0.1m$ and length 6m Discretized in $128 \times 128 \times 28$ cells

- Closed field lines with uniform magnetic field at B = 1.2T
- \bullet Fixed values for density and temperature on the low- ψ side
 - Excite a drift-wave instability
 - \bullet Control β in the system

Figure 4: Potential fluctuations with the ingredients of the EM model

Impact on Drift-Wave Turbulence 2/2

Three scenarios with increasing $\beta_{\text{eff}} = \beta \left(\frac{L_{\parallel}}{L_{\perp}} \right)^2$:

Profiles averaged over the poloidal direction and time in the saturated turbulence phase

theta velocity [m/s] -2000 -4000 -6000 -8000 ty [m/s] -10000-5000 -15000 -7500 — ES — ES ES ES with finite m e ES with finite m e ES with finite m e -20000 -10000 EM only induction EM only induction EM only induction -25000 EM with flutter EM with flutter EM with flutter -12500 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.02 0.04 0.06 radial coordinate [m] radial coordinate [m] radial coordinate [m] (a) $\beta_{eff} \approx 30$ (b) $\beta_{eff} \approx 90$ (c) $\beta_{eff} \approx 120$ Figure 6: Averaged velocity in poloidal direction

-2500

-5000

0.08

Impact on Interchange Instability: 1/2

Same set-up, but includes curvature with a major radius of 2m

Figure 7: Scheme of the slab geometry

- Comparison between the electrostatic reference, electron inertia and the full EM model
- Same prescribed values at the core boundary

Figure 8: Density map with the ingredients of the EM model

Impact on Interchange Instability 2/2

Averaged radial profiles for density: for three scenarios with increasing $\beta_{\text{eff}} = \beta \left(\frac{L_{\parallel}}{L_{\perp}}\right)^2$:

(a) $\beta_{eff} \approx 250$

(b) $\beta_{eff} \approx 700$

(c) $\beta_{eff} \approx 1100$

Observations

- Electron inertia creates leads to smaller but faster. filaments
- At high β , the EM model generates much larger structures that propagate slower

Figure 10: Estimated L_{\perp} of pressure fluctuations

Power Scan on the TCV-X21 Benchmark Case

Simulation of a quarter of a torus with 32 poloidal planes and 2e6 cells

Particle source driven by

fluid neutrals [Quadri et al. 2024]

- Density feedback on the separatrix to $n_{\text{sep}} = 7 \cdot 10^{18} \text{ part/m}^3$
- Particle recycling 90%,
 Energy recycling 0%

Compared scenarios

Increasing power influx at the core boundary, equally distributed between electrons and ions

- 150kW (as in TCV-X21)
- 500kW

Comparison between the **electrostatic** and the **full electromagnetic** models

- including electron inertia, magnetic induction and flutter -

Total: 4 simulations

Figure 11: Discretization of the domain

Progress of the simulation

- Initial ramp up with EM 500kW power
- After 10ms: start of the EM 150kW case
- Increase target density at the separatrix to match experimental H-mode conditions for EM 150kW: $0.7 \cdot 10^{19} \text{m}^{-3}$ for EM 5 00kW: $3 \cdot 10^{19} \text{m}^{-3}$
- Start electrostatic scenarios from available profiles
- Recently: Restore target density $0.7 \cdot 10^{19} \text{m}^{-3}$ for all cases

PROFILES NOT (YET) CONVERGED!!

(b) Total energy content

(c) Total energy in/out-flow

Global plasma profiles

Profiles at the outer midplane after resetting the density

0.2

- (a) Density $[m^{-3}]$
- Figure 14: Mean profiles at the outer-mid plane
- (c) Electron pressure [Pa]

3.0×10²

2.0×10²

Characteristics of radial heat transport

- At low power: similar radial energy fluxes and turbulence levels across the mid-plane
- At high power: Stronger increase in turbulence and consequent radial heat transport with the electromagnetic model

Figure 15: Radial energy flux for electrons $[Wm^{-2}]$

Figure 16: Turbulent ExB kinetic energy [Jm⁻³]

 $R - R_{\text{sep}}^{\cup}$ [m]

Magnetic flutter field

• Expectation: the amplitude of the flutter field scales with the plasma β

 Reality: at higher power, the flutter field is considerably stronger

(a)
$$\beta = \frac{p}{p_{mag}} = \frac{enT}{B^2/(2\mu_0)}$$

(b) Energy for field line bending [Jm⁻³] $\mathcal{E}_{\text{mag}} = \frac{B_{\text{pert}}^2}{2\mu_0}$

Figure 18: Traced field lines of the flutter field $\boldsymbol{B}_{\text{pert}}$

A dive into turbulent structures

As power increases, the EM model develops **larger**, more **energetic** filaments

Figure 19: Estimated perpendicular structure sizes [m] $L_{\perp} = \sqrt{\frac{\langle \vec{p}_e \rangle_{\varphi}}{|\nabla \vec{b}| \cdot \vec{G}|}}$

Figure 20: Turbulent energy of temperature fluctuations [Jm $^{-3}$] $\mathcal{E}_{\text{T,fluct}} = \sum_{i,e} \frac{3}{2} \frac{e^{\langle n \rangle_{\varphi}}}{\langle T \rangle_{\varphi}} |\tilde{T}|^2$

Figure 21: Relative electron pressure fluctuations for the 500kW scenario

with
$$\tilde{X} = X - \langle X \rangle$$

Instability drive

Turbulence suppression due to shear occurs as the electric shear γ_E exceeds the linear fluctuation growth rate γ_\star

Figure 22: Radial electric field E_r [Vm⁻¹]

Figure 23: Electric shear [s⁻¹] $\gamma_E = \left| \frac{\partial}{\partial r} \left(\frac{E_r}{B} \right) \right|$

Figure 24: Linear growth [s⁻¹] $\gamma_{\star} = C \frac{k_{\perp} |\nabla p|}{e n B}$

Conclusion

Electromagnetic model

- Magnetic induction in the parallel electric field
- Fluctuations of the equilbrium magnetic field with flutter
- Electron inertia to constrain Alfvén wave speeds and for numerical stability

Set of simulations

- Study of drift-wave and interchange instabilities on a slab geometry
- TCV simulations to compare the ES and EM model under two power regimes

Observations

- Destabilizing effect of electron inertia and magnetic induction
- Stabilizing effect of flutter
- Larger plasma blobs and further propagation with the EM model at high power

Outlook

- Continue the TCV simulations until to reach a quasi steady-state
- Investigate the radial electric field and the L-H transition on slab cases