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Motivation

• Dispersion interferometry is a key control
diagnostic in an increasing number of fusion
experiments

• At W7-X the interferometer suffers from
distortions of the quadrature constellation in
all phase evaluation methods (Brunner et al.
[2022])

• quadrature components in short:
s(t) ∝ eiΦ(t) = inphase(t) + i · quadrature(t)

• Cause systematic errors in phase space that
change over time and can only be partially
corrected

• correction is static, which is a problem for
steady-state operation
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Previous work and placement within

• We want to use artificial neural networks (ANN) to address the errors
• Quadrature component extraction is a common problem and has been attempted

with neural networks, e.g. in radio communication
• in interferometry the first application was Li et al. [2003] followed by other

correcting nonlinearities in the constellation of homodyne interferometers
• only Olyaee et al. [2014] attempted this with a heterodyne interferometer and

again only to correct errors after the measurement
Our approach :

• this is the first attempt at extracting quadrature components directly using an
auto-encoder without training on known results

• nobody has attempted this, esp. not with a modulated dispersion interferometer
• The general training methodology can be applied to other quadrature detection

schemes outside of interferometry even
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Background

• The temporal interferogram of a modulated dispersion interferometer in the time
domain can be described by a sum of integrals (Brunner et al. [2018])

inphase :

∫ Tm/2

0
s̃(t)dt +

∫ Tm

Tm/2
s̃(t)dt ∝ Ci(ρ) cosϕp (1)

quadrature :

∫ Tm/2

0
s̃(t)dt −

∫ Tm

Tm/2
s̃(t)dt ∝ Cq(ρ) sinϕp (2)

• Hornik et al. [1989] have shown, that artificial neural networks (ANN) are universal
approximators

• Lloyd et al. [2020] have shown that an ANN can act as a universal integrator on
Rn → R

• Hence, an ANN should be able to learn quadrature components directly
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The catch

• A normal ANN learns on a ground truth, e.g. in our case a "known integral"
• In our case the known data would have to come from the experiment and would

inherit the error we are trying to remove
• We need to train the ANN to extract the phase from the signal without a known

value ⇒ Autoassociative self-supervised learning
• Most common class of ANN used for this purpose is an auto-encoder (AE)
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Auto-Encoders

• Are a type of reproductive ANN
used for dimensionality reduction,
feature extraction and noise removal
(Rumelhart et al. [1986], Hinton and
Salakhutdinov [2006])

• The network attempts to reproduce
an input by compressing it to some
encoded representation and then
decoding that representation again

• The decoded data is a (usually noise
reduced) reproduction of the input

• often the latent space is ignored

encoded representation
(e.g. inphase/quadrature)

latent space
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Training an intelligible latent space

• An AE will find an arbitrary solution in the latent space that allows it to reproduce
the output → latent space is normally unintelligible

• We reduce the latent space solutions to only the ones with certain mathematical
properties using regularization on the latent space directly:

MSE⊥ =
∑

N

(
x2

i,1 + x2
i,2 − 1

)2
(3)

MSEorigin = N ·
(∣∣mean(xi,1)

∣∣+ ∣∣mean(xi,2)
∣∣) (4)

• MSE⊥ enforces the first two latent space variables to reside on the unit circle
• MSEorigin enforces the first two latent space variables to be centered on the origin.

This is only true for large randomly sampled batch sizes (i-index)
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Sampling for training without a sampling gap

• In a quadrature scheme the entire
range of possible ANN inputs can be
sampled, since phase is contained
within (−π, π)

• We scan the unit circle using a wedge
scan, which is always acquired at
W7-X for quadrature correction
(Brunner et al. [2018, 2022])
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• from the wedge we randomly sample such that the resulting distribution is uniform

in (−π, π)

• The batch size is arbitrarily chosen with 3 times the number of bins
• This scheme also allows training on plasma data, but no difference in

performance was seen, so we use the wedge (not shown in the paper)
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ANN constellation error

• network architecture tuned using
keras_tuner:

• asymmetric auto-encoder
• single hidden layer (least computational

effort)
• roughly 150 neurons (different for en- and

decoder)
• 3 latent space variables

• ANN derived constellation is incredibly clean
with minor residual distortions (need to be
investigated in the future)

• The systematic error is on par or lower than
the corrected lock-in amplification method’s
(currently the best achievable)
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Program performance

• plasma data
from program
#20241112.62

• noise is
significantly
lower in the
no-plasma case

• resolution of
highly dynamic
plasma
situations with
incredible fidelity −50 −40 −30 −20 −10
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Discussion

• method can be used to train a network on
multiple programs

• allows us to effectively mitigate constellation
drifts over the course of the day
(omnipresent at W7-X and currently ignored
in the real-time system)

• highly interesting for real-time applications,
which currently cannot correct these drifts

• The neural network is small enough to fit on
an FPGA, i.e. real-time capable
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Summary

• We have developed a method to extract quadrature components from the
temporal interferogram of a modulated dispersion interferometer directly

• We show that the fidelity of the W7-X IEDDI system can be enhanced by almost
an order of magnitude at full bandwidth and by a factor of 2 in both precision and
accuracy when compared to the lower bandwidth lock-in amplification method

• The scheme can be expanded to mitigate constellation drifts at W7-X, which occur
over the course of an experiment day and is compatible with the W7-X real-time
FPGA evaluation

• The training scheme presented here is not confined to the dispersion
interferometer field and prob. applicable to most quadrature detection schemes

• One could envisage a continuous incremental training to constantly calibrate the
system during a density steady-state flat-top phase
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